
MA 121: Practice Exam 2 Name:

Here are some practice problems. Some of them are more difficult than the
problems that will appear on the exam. There are certainly more problems
here than will appear on the exam.

(1) Write down the right Riemann sum with n = 5 rectangles for the
function f (x) = 1√

x on the interval [1,5].

Solution: Recall that a Riemann sum with n rectangles is of the
form ∑

n
i=1 f (ci)∆x. In our case, we have ∆x = 4/n and ci = 1+

i∆x = 1+4i/n. Thus, the right Riemann sum is:
1√

(1+4/5)
(4/5)+ 1√

(1+8/5)
(4/5)+ 1√

(1+12/5)
(4/5)

+ 1√
(1+16/5)

(4/5)+ 1√
(1+20/5)

(4/5)

(2) Use a left Riemann sum with n = 3 rectangles to approximate the
area between the graph of f (x) = 3

√
x on the interval [0,1].

Solution: We have ∆x = 1/3 and ci = (i−1)∆x = (i−1)/3. Then
the left Riemann sum asked for is:

0+ 3
√

(1/3)(
1
3
)+ 3
√
(2/3)(

1
3
)

(3) Use the definition of the definite integral as the limit of Riemann
sums to calculate

∫ 2
0 x2 dx. I suggest you use right Riemann sums.

You will need to know that
n
∑

i=1
i2 = n(n+1)(2n+1)/6.

Solution: We have ∆x = 2/n and ci = 2i/n and f (ci) = 4i2/n2.
Then:

∑
n
i=1 f (ci)∆x =

∑
n
i=1

4i2
n2 · 2

n =

∑
n
i=1

8i2
n3 =

8
n3 ∑

n
i=1 i2 =

8
n3

n(n+1)(2n+1)
6

Taking the limit we get:∫ 2
0 x2 dx = limn→∞

8
n3

n(n+1)(2n+1)
6

= 16
6

= 8/3.
1
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(4) Suppose that f is a continuous function. Find lim
h→0

1
h
∫ x+h

x f (t)dt.

Solution: Since f is continuous, by the EVT, it attains its maximum
M(h) on the interval [x,x+h] and also attains its minimum m(h) on
[x,x+h]. By the properties of integrals, we have:∫ x+h

x m(h)dt ≤
∫ x+h

x f (t)dt ≤
∫ x+h

x M(h)dt
hm(h) ≤

∫ x+h
x f (t)dt ≤ hM(h).

Assuming that h > 0, dividing both sides by h we have:

m(h)≤ 1
h

∫ x+h

x
f (t)dt ≤M(h)

So
lim
h→0

m(h) ≤ lim
h→0

1
h
∫ x+h

x f (t)dt ≤ lim
h→0

M(h)

f (x) ≤ lim
h→0

1
h
∫ x+h

x f (t)dt ≤ f (x).

because f is continuous and any point in the interval [x,x+ h] ap-
proaches x as h→ 0.

Thus,

lim
h→0

1
h

∫ x+h

x
f (t)dt = f (x).

(5) Suppose that f is a continuous function. State and prove the first
version of the fundamental theorem of Calculus.

Statement: FTC: If f is a continuous function on [a,b] then d
dx
∫ x

a f (t)dt =
f (x).

Proof: We use the definition of the derivative and the previous prob-
lem:

d
dx
∫ x

a f (t)dt =

limh→0
1
h

(∫ x+h
a f (t)dt−

∫ x
a f (t)dt

)
=

limh→0
1
h
∫ x+h

x f (t)dt =
f (x)

(6) Find the derivative with respect to x of the following functions. For
give a rationale for your answer:

(a)
∫ x

0 sin(t2)dt

Solution: By FTC I, we have
d
dx

∫ x

0
sin(t2)dt = sin(x2).
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(b)
∫ 0

x sin(t2)dt

Solution: Since
∫ 0

x sin(t2)dt =−
∫ x

0 sin(t2)dt, by the previous
problem

d
dx

∫ 0

x
sin(t2)dt =−sin(x2).

(c)
∫ x
−x sin(t2)dt.

Solution: We have:∫ x

−x
sin(t2)dt =

∫ 0

−x
sin(t2)dt +

∫ x

0
sin(t2)dt.

By two problems ago, d
dx
∫ x

0 sin(t2)dt = sin(x2). We also have∫ 0
−x sin(t2)dt =

∫−x
0 f (t)dt.

Let g(x) =
∫−x

0 f (t)dt. Then g(x) = f (u(x)) where f (u) =∫ u
0 sin(t2)dt and u(x) =−x. By FTC I,

d f
du

= sin(u2).

So by the chain rule:

d
dx

g(x) =−sin((−x)2) =−sin(x2)

Thus,
d
dx

∫ x

−x
sin(t2)dt = 2sin(x2).

(7) Prove that if f is a differentiable function such that f ′(x) = 0 for all
x, then f is a constant function.

Solution: We will prove that for all a < b, we have f (a) = f (b).
Suppose that a < b. By the MVT, there exists c ∈ (a,b) such that
f ′(c) = f (b)− f (a)

b−a . Since f ′(x) = 0 for all x, we have

f (b)− f (a)
b−a

= 0.

Multiplying both sides by (b− a) produces f (b)− f (a) = 0. This
means that f (b) = f (a), as desired.

(8) Prove that if F ′(x) = G′(x) for all x, then there is a constant C such
that F(x) = G(x) =C.
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Solution: Let H(x)=F(x)−G(x). We have H ′(x)=F ′(x)−G′(x)=
0, for all x. By the previous problem this implies that H(x) is con-
stant. That is, there exists a constant C such that H(x) = C. The
definition of H(x) then gives us F(x) = G(x)+C.

(9) Use only the first version of the fundamental theorem of Calculus
and the previous problem to find

∫ 2
0 t2 dt.

Solution: By FTC I, the function F(x) =
∫ x

0 t2 dt is an antiderivative
of f (x) = x2. By the power rule, we also know that G(x) = x3/3 is
an antiderivative of f (x). This means that F ′(x) = G′(x). By the
previous problem, there exists a constant C such that, for all x,∫ x

0
t2 dt =

1
3

x3 +C.

Since, G(0) = 0 we have, 0 = 1
3(0)

3 +C, so C = 0. Thus,∫ x

0
t2 dt =

1
3

x3

for all x. Choosing x = 2, we have∫ 2

0
t2 dt = 8/3.

(10) Recalling that ln(x) =
∫ x

1
1
t dt, explain why d

dt ln(x) = 1
x . What is the

equation of the tangent line to the graph of y = ln(x) at the point
(e,1)?

Solution: By FTC I, d
dx
∫ x

1
1
t dt = 1

x , thus the derivative of ln(x) is
1/x. At the point (e,1), the slope of the tangent line to the graph of
y = ln(x) is 1/e. The equation of the tangent line is, therefore,

y =
1
e
(x− e)+1

This can be rewritten as

y =
1
e

x.

(11) Recall that ex is defined to be the inverse function of ln(x). Use
this fact and the previous problem to prove that the derivative of
g(x) = ex at x = 1 is g′(1) = e.

Solution: Since ex is the inverse of ln(x), its graph can be obtained
by reflecting the graph of y = ln(x) over the line y = x. All tangent
lines to the graph of y = ln(x), when reflected, become tangent lines
to the graph of y = ex. If y = mx+ b is a line, the line obtained by
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reflecting it over y = x has equation y = 1
mx− b

m . The line tangent to
the graph of y = ln(x) at the point e,1) has slope 1

e by the previous
problem. The reflected line is tangent to the graph of y = ex at the
point (1,e). Our calculation shows that the line has slope 1

1/e = e.
Thus, the derivative of g(x) = ex at x = 1 is e.

(12) A differentiable one-to-one function f (x) has the properties that
f (1) = 7 and f ′(1) = 3. Carefully explain, using pictures, why the
derivative of f−1(x) at x = 7 is 1/3.

Solution: You’ll need to provide you own pictures. The essence is
that the graph of f (x) has a tangent line with slope 3 at the point
(1,7). Reflecting everything over the line y = x, converts the line
into a tangent line for the graph of f−1(x) at the point (7,1) with
slope 1/3.

(13) Prove that d
dx arcsin(x) = 1√

1−x2 .

Solution: The previous two problems demonstrate that if a func-
tion f (x) has a tangent line with slope m at the point (a, f (a)),
then the inverse function f−1(x) has a tangent line with slope 1/m
at the point ( f (a),a). Let f (x) = sinx. At the point (a,sin(a)),
the function f (x) has tangent line with slope cos(a). Thus, at the
point (sin(a),a), the function arcsin(x) has a tangent line with slope
1/cos(a). Let x = sin(a). The sides of a right triangle with angle
a are labelled x (opposite from a) and cos(a) (adjacent to a) when
the hypotenuse has length 1. By the Pythagorean theorem, we have
cos(a) =

√
1− x2. Thus, the derivative of arcsin(x) is 1

cosa =
1√

1−x2 .

(14) Drawn below is the graph of a function f (x), with the area between
the graph and the x axis marked for various intervals. Suppose that
F(x) is an anti-derivative of f (x) with F(0) = 6. Find F(6).
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Solution: Recall that by FTC I, the function G(x) =
∫ t

0 f (t)dt is
an antiderivative of f (x). Thus all antiderivatives are of the form∫ t

0 f (t)dt+C for a constant C. Since G(0) = 0, to have an antideriv-
ative F with F(0) = 6, we need to let C = 6. Let F(x) = G(x)+6.
Since G(x) measure the signed area between the graph of f (t) and
the t axis for 0 ≤ t ≤ x, we simply plug x = 6 in to find G(6) =
(π/4)−3+1 =−2+π/4. Hence, F(6) = 4+π/4.

(15) Let F(x) =
∫ x

0 t(t +2)(t−1)dt. Find and classify all critical points
of F(x).

Solution: By FTC I, F ′(x) = x(x+ 2)(x− 1). We have F ′(x) = 0
at x = 0,−2,+1. If x < −2, then F ′(x) < 0. If −2 < x < 0, then
F ′(x) > 0. If 0 < x < 1, then F ′(x) < 0. If x > 1, then F ′(x) > 0.
Thus, F is decreasing on (−∞,−2) and (0,1) and increasing on
the intervals (−2,0) and (1,∞). Thus, x = −2 and x = 1 are local
minima and x = 0 is a local maximum.

(16) Using the fact that d
dt sin t = cos t, prove that d

dt cos t =−sin t.

Solution: By examining the graphs, we recall that cos t = sin(t +
π/2). Thus, the derivative of cos t is just the derivative of sin t
shifted left by π/2. That is: d

dt cos t = cos(t + π/2). Shifting the
graph of cosine left by π/2 produces the graph of−sin t, so d

dt cos t =
−sin(t).

(17) Find derivatives (with respect to t) of the following functions:

(a) f (t) = sin t + cos t
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Solution: f ′(t) = cos t− sin t.

(b) g(t) = et sin t

Solution: g′(t) = et sin t + et cos t.

(c) h(t) =
√

et−1

Solution: h′(t) = et

2
√

et−t
.

(d) k(t) =
√

et2−1

Solution: k′(t) = 1

2
√

et2−1
(et2

)(2t).

(e) m(t) =
√

t√
t2−1

Solution: Rewrite m(t) as

m′(t) = t1/2(t2−1)1/2

Let f (t)= t1/2 and g(t)= (t2−1)1/2. Calculate f ′(t)= (1/2)t−1/2

and g′(t) = (1/2)(t2−1)−1/2(2t) = t(t2−1)−1/2. Now use the
product rule:

m(t) = f (t)g(t)
m′(t) = f ′(t)g(t)+ f (t)g′(t)
m′(t) = (1/2)t−1/2(t2−1)1/2 + t1/2(t)(t2−1)−1/2

(f) n(t) = sin(ln t)

Solution: n′(t) = cos(ln(t))
t .

(18) Find dy
dx for the curve x3− y2 = 1 at the point (2,

√
7).

Solution: Use implicit differentiatiation to find:

3x2−2yy′ = 0.

Solve for y′ to get:

y′ =
3x2

2y

Plug in x = 2, y =
√

7 to find that at (2,
√

7):

dy
dx

=
24

2
√

7
.

(19) Find the following antiderivatives:
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(a)
∫

t2−
√

t + 1
t dt.

Solution: t3

3 − (2/3)t3/2 + ln |t|+C

(b)
∫

e2t sin(e2t)dt

Solution: Let u(t) = e2t . Then du = 2e2tdt so∫
e2t sin(e2t)dt =∫
(1/2)sinudu =

−(1/2)cosu+C =
−(1/2)cos(e2t)+C

(c)
∫

sin2 t cos t dt

Solution: Let u(t) = sin t. Then the given antiderivative is:∫
u2 du = (1/3)u3 +C = (1/3)sin3 t +C.

(d)
∫ arcsin t√

1−t2 dt

Solution: Let u(t) = arcsin t. Then du = 1√
1−t2 dt, so

∫ arcsin t√
1−t2 dt =∫

udu =
u+C =

arcsin t +C

(20) Find the following definite integrals:

(a)
∫ 3

1 x2− 1
3√x

dx

Solution:

(1/3)x3− (3/2)x2/3
∣∣∣3
1
= (9− (

3
√

35/2))− (1/3−3/2).

(b)
∫ π/4

0 sin(2t)dt

Solution: −cos(t)/2
∣∣∣π/2

0
= 0+ 1

2 .

(c)
∫ 8

0 tet2
dt
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Solution: Let u = t2. Then du = 2tdt and u(0) = 0 and u(8) =
64 so ∫ 8

0
tet2

dt =
1
2

∫ 64

0
eu du =

1
2
(e64−1).

(d)
∫ 3

0 t sin(t)dt

Solution: Let u = t and dv = sin(t)dt. Then du = dt and v =
−cos t. So using integration by part:∫ 3

0 t sin t dt = −t cos t
∣∣∣3
0
−
∫ 3

0 (−cos t)dt

= −3cos(3)+ sin(3).

(21) Prove that every function f (x) having the property that f ′(x) is pro-
portional to f (x) is of the form f (x) = Aekx for some constants A
and k. Suppose that a population of bacteria doubles every 1/2 hour.
Explain the relevance of the the equation f ′(x) = k f (x) to determin-
ing the population of the bacteria after 75 minutes.

Solution: Since f ′(x) is proportional to f (x) we have, for some
constant k:

f ′(x) = k f (x).

If f (x) 6= 0, we have:

1
f (x)

f ′(x) = k.

Integrate both sides using substitution to get:∫ 1
f (x) f ′(x)dx =

∫
k dx

ln | f (x)| = kx+C

Exponentiate both sides to get:

± f (x) = ekx+C

Since ekx+C = ekxeC, we let A = eC and write:

f (x) =±Aekx

If we allow A to be positive or negative, we can write

f (x) = Aekx

Allowing A to also be zero, gives us the solution when f ′(x) is zero.
We don’t address why this is the unique solution with f ′(x) = 0 for
some zero.
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(22) In walking from Colby to my house I need to walk by the Mount
Merici school. See the diagram below. I can cut straight across the
field through deep snow, to my house, or I can walk along the road
with no snow. Of course, I can also walk along the road for some
distance, and then cut through the field.

100 yd

start

end

50 yd

snowy field

x

If I walk at 90 yards per minute with no snow and at 30 yards per
minute through deep snow, what path gets me to my house in the
shortest amount of time? That is, how far should I walk along the
road, before cutting through the snow? Solve this problem in several
steps:

(a) Suppose that I choose to start cutting through the field, x yards
before the corner. How much time do I spend walking on the
road?

Solution: The distance walked in the road is (100− x) yards.
I walk at 90 yd per minute and so the time spent on the road is
(100− x)/90.

(b) Suppose that I choose to start cutting through the field, x yards
before the corner. What distance do I travel through the field?
How much time do I spend walking through the field?

Solution: By the Pythagorean theorem, the distance walked in
the snowy field is

√
502 + x2 yd. I walk at a rate of 30 yd per

min in the snow so the time spent in the field is 1
30

√
502 + x2.

(c) Let s(x) be the total time spent getting to my house from the
start of Mt. Merici’s driveway, where I choose to start cutting
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through the field x yards before the corner. Find a formula for
s(x).

Solution: s(x) = 100−x
90 + 1

30

√
502 + x2.

(d) Find the critical points of s(x). Is one of these the global mini-
mum? If not what is?

Solution: Notice that 0≤ x≤ 100. We have:

s′(x) =− 1
90

+
x

30
√

502 + x2
.

We find the critical points:

− 1
90 +

x
30
√

502+x2 = 0
−1+ 3x√

502+x2 = 0√
502 + x2 = 3x
502 + x2 = 9x2

502

8 = x2

50
2
√

2
= x

25/
√

2 = x.

(We only need a positive value for x.)

Notice that s′(x) < 0 only if x < 25/
√

2 and s′(x) > 0 if x >

25/
√

2. Thus x = 25/
√

2 is a local minimum. Plug into s(x) to
find

s(25/
√

2) =
100−25

√
2

90
+

1
30

√
502 +502/8

This means that

s(25/
√

2)≈ .718+1.768≈ 2.486

We also check the endpoints s(0)≈ 2.778 and s(100)≈ 3.727
minutes. We conclude that starting to cut across the field at
x = 25/

√
2 yd from the corner will minimize the time spent

walking home.


