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1. BASIC CONCEPTS AND REVIEW FROM MA 122

1.1. Euclidean Vector spaces. In this course, a vector space will always
consist of a set of the form:

Rn = {(x1,x2, . . . ,xn) : xi ∈ R}
with component wise addition and scalar multiplication. For example, in
R3:

(1,2,3)+(−5,4,16) = (−4,6,19)
and √

3(1,2,3) = (
√

3,2
√

3,3
√

3).

In these notes, an element (called a vector) of Rn for n ≥ 2 will be often
be denoted in bold face, (eg. x). On the blackboard, vectors are usually
denoted by ~x. If x = (x1,x2, . . . ,xn) ∈ Rn, the numbers xi are called the
coordinates or components of x. We will often write a vector (x1, . . . ,xn)

in vertical format as


x1
x2
...

xn

. The zero vector is the vector 0 = (0,0, . . . ,0).

In Rn, the standard basis vectors (for rectangular coordinates) are

e1 = (1,0,0, . . . ,0)
e2 = (0,1,0, . . . ,0)

...
en = (0,0, . . . ,0,1)

That is, ei is the vector with the ith coordinate equal to 1 and all other
coordinates equal to 0. Notice that

(x1,x2, . . . ,xn) = x1e1 + x2e2 + . . .+ xnen.

In R2 the standard basis vectors are sometimes denoted by i and j instead of
e1, and e2. In R3 the standard basis vectors are sometimes denoted i, j, and
k instead of e1, e2, and e3.

We can picture a vector x in R2 or R3 as an arrow with base at 0 and the tip
of the arrowhead at x.

The act of multiplying a vector x∈Rn by a scalar k ∈R, stretches the arrow
representing x if k > 1 and shrinks the arrow representing x if 0 < k < 1.
If k < 0, the vector kx is represented by an arrow pointing in the direction
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FIGURE 1. The vector (.8,2.4) is in blue and the vector
(1.6,2.4) is in red.

opposite the arrow representing x. The sum of two vectors in R2 or R3 can
be found using the parallelogram rule as in Figure 2.

FIGURE 2. The sum of the red vector and the blue vector is
the purple vector.

1.1.1. Length and Distance. Given a vector x = (x1,x2, . . . ,xn) in Rn, its
length (or magnitude or norm) is denoted

||x||=
√

x2
1 + x2

2 + . . .+ x2
n.

The (Euclidean) distance between two vectors x and y is defined to be

||x−y||.
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1.1.2. Dot product. If x = (x1, . . . ,xn) and y = (y1, . . . ,yn) are two vectors
in Rn their dot product is defined to be:

x ·y = x1y1 + x2y2 + . . .+ xnyn.

Notice that this means that for any vector x ∈ Rn,

||x||2 = x ·x.

Theorem 1.1. Suppose that u,v,w ∈ Rn and that k, l,m ∈ R. Then
the following are true:

(a) (Commutativity)

u ·v = v ·u

(b) (Vector Distributativity)

u · (v+w) = u ·v+u ·w

(c) (Scalar Associativity)

k(u ·v) = (ku) ·v = u · (kv)

1.2. Linear functions and matrices. The importance of linear functions
arises from their ability to approximate differentiable functions.

1.2.1. Linear functions. A function f : Rn→Rm is a linear function if for
all x,y ∈ Rn and for all k, l ∈ R:

f (kx+ ly) = k f (x)+ ly.

Exercise 1.2. Prove that the linear functions f : R→ R are exactly those
of the form f (x) = mx for some m ∈ R.

A function g : Rn→Rm is an affine function if there exists a linear function
f : Rn→ Rm and a vector b ∈ Rm such that for all x ∈ Rn.

g(x) = f (x)+b.

Exercise 1.3. Prove that a function g : R→R is affine if and only if it is of
the form g(x) = mx+b for some fixed m,b ∈ R.

Exercise 1.4. Give examples of linear functions R2 → R, R→ R2, and
R2→ R2.
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1.2.2. Matrices. An m×n matrix M is an array of the form

M =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
am1 am2 . . . amn

 .

We will sometimes place the dimensions of the matrix as subscripts on the
name of the matrix. Thus we might write Mmn for the above matrix.

If we let
r1 = (a11,a12, . . . ,a1n)
r2 = (a21,a22, . . . ,a2n)

...
rm = (am1,am2, . . . ,amn)

we can write the matrix Mmn as

M =


r1
r2
...

rm

 .

Similarly, if we let c1, . . . ,cn be the columns of Mmn then we can write

M =
(
c1 c2 . . . cn

)
.

Suppose that

Amn =


A1
A2
...

Am


and

Bnp =
(
B1 B2 . . . Bp

)
are both matrices where Ai is the ith row of A and B j is the jth column of
B. Botice that both Ai and Bj are in Rn. Then the product AB is an m× p
matrix defined by

AB =


A1 ·B1 A1 ·B2 . . . A1 ·Bp
A2 ·B1 A2 ·B2 . . . A2 ·Bp

...
Am ·B1 A1 ·B2 . . . Am ·Bp


That is, the entry in the ith row and jth column of AB is the dot product of
the ith row of A with the jth column of B.
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Exercise 1.5. Let A =

1 2 3
4 5 6
7 8 9

 and let B =

−1 7 −1
0 2 −2
6 −3 0

. Let v =

(3,1,−5).

(a) Calculate AB

(b) Calculate BA

(c) Calculate Av and Bv.

(d) Let ei be the ith basis vector of R3. Calculate Aei and Bei.

If A is a matrix and if k ∈R, then kA is defined to be the matrix obtained by
multiplying all the entries of A by k. If A and B are matrices with the same
dimensions, then A+B is defined to be the matrix obtained by adding the
corresponding entries of A and B.

Exercise 1.6. Let A =

1 2 3
4 5 6
7 8 9

 and let k = 2. Write down all the entries

of kA.

Exercise 1.7. Let A=

1 2 3
4 5 6
7 8 9

 and let B=

−1 7 −1
0 2 −2
6 −3 0

. Compute

A+B.

The following theorem should come as no surprise:

Theorem 1.8. Suppose that A,B,C are matrices and that k, l ∈ R
such that all expressions in what follows are defined. Then

(a) A(BC) = (AB)C

(b) A(B+C) = AB+AC

(c) (A+B)C = AC+BC.

(d) (kA)BC = k(ABC)

(e) (k+ l)A = kA+ lA

Exercise 1.9. Let A =

(
1 2 3
4 5 6

)
. Let v = (−4,8,2).

(a) Calculate Av.

(b) Define a function by f (x) =Ax. What are the domain and codomain
of f ? Show that f is a linear function.
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The n×n identity matrix In is the matrix
(
e1 . . . en

)
, where ei is the ith

basis vector of Rn.

Exercise 1.10. (a) Suppose that A is an arbitrary n×n matrix. Explain
why IA = AI = A.

(b) If A is an m×n matrix such that m 6= n, is it still true that IA = AI =
A? Why or why not?

The following theorem is fundamental to linear algebra. It is typically
proved in a linear algebra course.

Theorem 1.11. A function f : Rn→Rm is linear if and only if there
is an m×n matrix A such that f (x) = Ax for all x ∈ Rn.

Exercise 1.12. Consider the grid on R2 given by horizontal lines at integer
y values and vertical lines at integer x values. What happens to this grid
under the linear function f : R2→ R2 given by

f (x) =
(

1 2
−1 2

)
x.

2. VISUALIZING FUNCTIONS f : Rn→ Rm

There are three basic situations to consider n < m, n = m, and n > m. Fur-
thermore, we will almost always be considering the following types of func-
tions:

• f : R→ R (the subject of Calculus I)
• f : R2→ R and f : R3→ R (the subject of Calculus II)
• f : R→ R2, and f : R→ R3 (parameterized curves)
• f : R2→ R3 (a parameterized surface)
• f : R2→ R2 and f : R3→ R3 (vector fields)

2.1. Visualizing functions f : R→R and f : R2→R. If f : R→R then
we (in principle) can draw the graph of f in R2 with the horizontal axis
representing the domain and the vertical axis representing the codomain. If
f : R2→R then we can draw the graph of f in R3 with the horizontal plane
representing the domain and the vertical axis representing the codomain.

Exercise 2.1. Define f : R2→ R by f (x) = ||x||. Sketch the graph of f in
R3.

Humans often have a difficult time visualizing objects in R3. One of the
most common methods of trying to gain a better understanding of an oject



9

in R3 is to slice it by planes parallel to one of the xy, yz, or xz planes in
R3. This corresponds to fixing f (x,y), x, or y (respectively). Here are two
examples:

Example 2.2. Draw 3 slices of the graph of f (x,y) = x2−2y2 using x-slices
(that is slices parallel to the yz-plane.)

Solution: Fixing x = 0, we have the function f (0,y) = −2y2. We draw
the graph of this on the yz plane. We also do this for x = ±0.5, getting
f (±0.5,y) = .25−2y2 and x =±1, getting f (1,y) = 1−2y2.

-4.8 -4 -3.2 -2.4 -1.6 -0.8 0 0.8 1.6 2.4 3.2 4 4.8

-3.2

-2.4

-1.6

-0.8

0.8

1.6

2.4

3.2

y

z

FIGURE 3

Here is a 3-dimensional figure illustrating the fact that our graphs in the yz
plane come from slicing the graph of f (x,y) in R3 by planes parallel to the
yz axis.

3. DIFFERENTIATION

3.1. Partial Derivatives. You should recall that for f : R2→R, ∂

∂y f (a,b)
is the slope of the line in the x = a slice tangent to the graph of z = f (x,y)
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FIGURE 4

at y = b. You can compute ∂

∂y f (a,b) by holding x constant, taking the
(1-variable) derivative of f with respect to y and then plugging in (x,y) =
(a,b). The gradient of f at (a,b) is defined to be:

∇ f (a,b) =
(

∂

∂x
f (a,b),

∂

∂y
f (a,b)

)
Example 3.1. Let f : R2→ R be the function f (x,y) = x2−2y2. Then

∂

∂x f (x,y) = 2x
∂

∂y f (x,y) = −4y
∇ f (x,y) = (2x,−4y)

At the point (x,y) = (1, .5) we have:

∂

∂x f (1, .5) = 2
∂

∂y f (1, .5) = −2
∇ f (x,y) = (2,−2)

The fact that ∂

∂y f (1, .5) =−2 can be seen from Figure 5.
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FIGURE 5. If x = 1, the equation for f (x,y) becomes
f (x,y) = 1−2y2. The tangent line to this graph at y = .5 has
equation l(y) = −2(y− .5)+ .5. Thus, ∂

∂y f (1, .5) = −2. In
the figure on the right, you can see the 3-dimensional graphs
of f (x,y) and the tangent plane (in red) to f (x,y) at (1, .5).
It is evident that the tangent plane slices through the plane
x = 1 in a line of slope -2 which is the tangent line to the
graph of f (1,y) = 1−2y2.

For a function f : Rn → R, we keep constant all but one coordinate xi of
x = (x1, . . . ,xi, . . . ,xn) we have a partial function of f . If f is differentiable,
we can take the partial derivative of f with respect to xi.

Example 3.2. Let f : R4→ R be defined by

f (x1,x2,x3,x4) = x2
1− x2

2 + x3−5x5
4x3.

Then:
∂

∂x4
f (x1,x2,x3,x4,x5) =−25x4

4x3.

The gradient of f : Rn→ R is:

∇ f =
(

∂

∂x1
f ,

∂

∂x2
f , . . . ,

∂

∂xn
f
)
=


∂

∂x1
f

∂

∂x2
f

...
∂

∂xn
f

 .

Example 3.3. Let f : R4→ R be defined by

f (x1,x2,x3,x4) = x2
1− x2

2 + x3−5x5
4x3.
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Then:

∇ f (x1,x2,x3,x4) =


2x1
−2x2

1
−25x4

4x3


Important Observation: If f : Rn→ R is differentiable, then

∇ f : Rn→ Rn

is a vector valued function.

We will sometimes think of

∇ =


∂

∂x1
∂

∂x2...
∂

∂xn


as a function of functions. Its input is a function f : Rn→ R and its output
is a function ∇ f : Rn→ Rn.

3.2. Linear Approximation. Suppose that f : Rn → R is differentiable
at 0 and that f (0) = 0. The gradient allows a nice formula for a linear
approximation to f near 0. Let:

L(x) = ∇ f (0) ·x
Then L : Rn→R is a linear function which is a “good approximation” to f
near 0 in the sense that:

lim
x→0

f (x)−L(x)
||x−0||

= 0

(You can summarize this equation by saying that the relative error between
f and L goes to 0 as x approaches 0.)

The restriction to differentiability at 0 is rather unnatural. If f is differen-
tiable at a ∈ Rn then

L(x) = ∇ f (a) · (x−a)+ f (a)
is a good approximation to f near a in the sense that

lim
x→a

f (x)−L(x)
||x−a||

= 0.

(This is, in fact, the definition of “differentiablility of f at a.) The graph of
L is the “tangent space” to the graph of f at the point (a, f (a)).
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Notice that, usually, L will not be linear function. It will, however, always
be an affine function. Nonetheless, L is called the “linear approximation”
to f at a. By introducing the notions of “tangent space” and “differential”
it is possible to turn L into a linear function between vector spaces. We will
not do this here, but may come back to it later.

We will want to use ideas similar to the above to construct linear approxi-
mations to differentiable functions f : Rn → Rm. For that matter, we still
need to define the notion of derivative for functions f : Rn→ Rm. We do
this now.

Notice that the formula ∇ f (0) · x looks like the entry in a matrix resulting
from a matrix multiplication. In fact, it is the result of the matrix multipli-
cation: (

∂

∂x1
f (0) ∂

∂x2
f (0) . . . ∂

∂xn
f (0
)

x1
x2
...

xn


3.2.1. Derivatives. The matrix

D f (0) =
(

∂

∂x1
f (0) ∂

∂x2
f (0) . . . ∂

∂xn
f (0
)

is called the derivative of f at 0. It is just the transpose of the vector ∇ f (0).

Inspired by this, we set out to extend these notions to a function f : Rn→
Rm. The function f can be written in the form:

f (x) = ( f1(x), f2(x), . . . , fm(x))

The function fi keeps track of the ith coordinate of the result of plugging x
into the function f . Notice that fi : Rn→R, so we can talk about its partial
derivatives. Assume that all partial derivatives of all the fi exist and define:

D f (a) =



∂ f1
∂x1

(a) ∂ f1
∂x2

(a) ∂ f1
∂x3

(a) . . . ∂ f1
∂xn

(a)
∂ f2
∂x1

(a) ∂ f2
∂x2

(a) ∂ f2
∂x3

(a) . . . ∂ f2
∂xn

(a)
∂ f3
∂x1

(a) ∂ f3
∂x2

(a) ∂ f3
∂x3

(a) . . . ∂ f3
∂xn

(a)
...

...
∂ fm
∂x1

(a) ∂ fm
∂x2

(a) ∂ fm
∂x3

(a) . . . ∂ fm
∂xn

(a)


The entry in the ith row and jth column is the partial derivative at a of fi
with respect to x j. Equivalently, the ith row consists of D fi(a).

Example 3.4. Define f : R2→ R4 by

f (x,y) = (xy,x2y,xy3,x4ey)
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Then

D f (x,y) =


y x

2xy x2

y3 3xy2

4x3ey x4ey


and

D f (1,2) =


2 1
4 1
8 12

4e2 e2

 .

Here is another example, demonstrating an important point (to be made
later).

Example 3.5. Define f : R2→ R2 and g : R2→ R2 by

f (x,y) = (x2 +2x,ey)
g(x,y) = (sin(x),5y+ x)

Notice that we can compose f and g to obtain f ◦ g : R2→ R. A formula
for f ◦g is:

f ◦g(x,y) = (sin2 x+2sinx,e5y+x).

Notice that g(0,0) = (0,0).

Compare D f (g(0)), Dg(0) and D( f ◦g)(0).

Solution:

D f (0) =

(
2 0
0 1

)
Dg(0) =

(
1 0
1 5

)
D( f ◦g)(0) =

(
2 0
1 5

)
Notice that:

D( f ◦g)(0) = D f (g(0))Dg(0).
This is an example of the chain rule at work.

3.2.2. Differentiability. Throughout this section, let f : Rn→ Rm be a dif-
ferentiable function and let fi be the ith coordinate function. Recall from
MA 122, that the existence of D f (a) does not guarantee the differentia-
bility of f at a. Put another way: Even if all partial derivatives exist, the
function may not have a good linear approximation near a. In this section
we define the notion of differentiability for a function f : Rn→Rm and we
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state a theorem which gives a necessary and sufficient condition for f to be
differentiable.

Definition: Let X ⊂ Rn be an open ball centered at a. and that f
is defined on X . Suppose that all partial derivatives of f at a ∈ Rn

exist and define:

h(x) = D f (a)(x−a)+ f (x.
Notice that h : Rn → Rm is an affine function. We say that f is
differentiable at a if

lim
x→a

|| f (x)−h(x)||
||x−a||

= 0

As before, this definition can be rephrased by saying that all partial deriva-
tives of f exist and the affine function h is a good approximation to f near
a.

Theorem 3.6. Suppose that f : Rn→Rm has the property that each
component function fi is differentiable at a. Then f is differentiable
at a. Furthermore, fi : Rn→ R is differentiable at a, if there is an
open ball X containing a such that fi is defined on X and all partial
derivatives of fi exist and are continuous on X .

Example 3.7. Let f : R3→ R2 be defined by

f (x,y,z) = (ln(|xyz|),x+ y+ z2)

Then

D f (x,y,z) =
(

1/x 1/y 1/z
1 1 2z

)
.

Let A be the coordinate axes in R3. That is, A = {(x,y,z) : xyz = 0}. Each
entry in the matrix D f (x,y,z) is continuous on R3− A. The function f
is defined on R3−A. Consequently, f is differentiable at each point a ∈
R3−A.

Finally, here is the statement of the chain rule:

Theorem 3.8. Suppose that g : Rn → Rm and f : Rm → Rp are
functions which are defined on open sets Y ⊂ Rn and X ⊂ Rm such
that g(Y )⊂ X . Assume that g is differentiable at y ∈ Y and that f is
differentiable at g(y)∈ X . Then, f ◦g : Rn→Rp is differentiable at
y and D( f ◦g)(y) = D f

(
g(y)

)
Dg(y).

Example 3.9. Define f (x,y) = (x2,x2 + y2). Let f̂ : R2→ R2 be the func-
tion f with domain in polar coordinates. What is D f̂ (r,θ)?
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Solution: Let T : R2→R2 be the change from polar coordinates to rectan-
gular coordinates. That is,

T (r,θ) = (r cosθ ,r sinθ).

Then, by definition, f̂ = f ◦T . Since the coordinates of f and T are poly-
nomials and trig functions, f and T are everywhere differentiable. A calcu-
lation shows that:

D f (x,y) =
(

2x 0
2x 2y

)
.

Thus,

D f (T (r,θ)) =
(

2r cosθ 0
2r cosθ 2r sinθ

)
.

Another calculation shows that

DT (r,θ) =
(

cosθ −r sinθ

sinθ r cosθ

)
.

Thus, by the chain rule:

D f̂ (r,θ)=
(

2r cosθ 0
2r cosθ 2r sinθ

)(
cosθ −r sinθ

sinθ r cosθ

)
=

(
2r cos2 θ −2r2 cosθ sinθ

2r 0

)
Sketch of proof of Chain Rule. Let g : Rn→ Rm and f : Rm→ Rk be such
that g and f are both differentiable at 0 and g(0) = 0 and f (0) = 0.

Special case: f and g are both linear.

Then there exist matrices Amk and Bnm so that

f (x) = Ax for all x ∈ Rm

g(x) = Bx for all x ∈ Rn

This implies that, for all x ∈ Rn

f ◦g(x) = A(Bx) = (AB)x.

Notice that:
D f (g(0)) = A

Dg(0) = B
D( f ◦g)(0) = AB

Thus,
D( f ◦g)(0) = D f (g0)Dg(0)

as desired.

General Case: f and g are not necessarily linear.
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Since g : Rn→ Rm is differentiable at 0, for x near 0,

g(x)≈ Dg(0)x.

Similarly, since f : Rm→ Rk is differentiable at g(0) = 0, for x near 0,

f (x)≈ D f (g(0))x.

To prove the theorem we just need to show that

f ◦g(x)≈ D f (g(0))Dg(0).
Remember that ≈ in this context means that the relative error goes to 0 as
x→ 0. We didn’t go over this in class, but here is a proof:

For convenience, define the following:

B = Dg(0)
A = D f (0)

We need to show that for each ε > 0, there exists δ > 0 so that if 0 < ||x||=
||x−0||< δ then

|| f ◦g(x)−ABx||
||x−0||

< ε.

Notice that:

|| f ◦g(x)−ABx||= || f ◦g(x)−Ag(x)+Ag(x)−ABx||.
By the triangle inequality,

|| f ◦g(x)−ABx|| ≤ || f ◦g(x)−Ag(x)||+ ||A(gx)−Bx)||.

Now there exists a constant α , such that for all y ∈ Rm, ||Ay|| ≤ α||y||.
Thus,

|| f ◦g(x)−ABx|| ≤
|| f (g(x))−Ag(x)||+ ||A(gx)−Bx)|| ≤
|| f (g(x))−Ag(x)||+α||g(x−Bx||

We now consider the relative errors.

Piece 1: Since g is differentiable at 0, there exists δ1 > 0, so that if 0 <
||x||< δ1 then

||g(x)−Bx||
||x||

< ε/2α.

Piece 2: There is a theorem, which guarantees that (since g is differentiable
at 0) there exists δ2 > 0 so that if ||x||< δ2, then there is a constant β such
that

||g(x)|| ≤ β ||x||.
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Piece 3: Since f is differentiable at 0 = g(0), there exists δ3 > 0 so that if
0 < ||y||< δ3, then

|| f (y)−Ay
||y||

< ε/2β .

This implies that
|| f (y)−Ay||< (ε/2β )||y||

Pieces 2 and 3 imply: if 0 < x < min(δ2,δ3), setting y = g(x) we have

|| f (g(x)−Ag(x)||< (ε/2β )||g(x)||< (ε/2β )β ||x||.

Consequently, if 0 < x < min(δ2,δ3), we have

|| f (g(x))−Ag(x)
||x||

< ε/2.

Piece 1 implies: if 0 < x < δ1, then
α||g(x)−Bx||

||x||
< ε/2.

We conclude that if 0 < ||x||< δ = min(δ1,δ2,δ3) then

|| f ◦g(x)−ABx||/||x|| ≤
|| f (g(x))−Ag(x)||/||x||+α||g(x)−Bx||/||x|| <

ε/2+ ε/2 = ε

as desired. �

4. SPACE CURVES

After reviewing, the differentiation of functions f : Rn→ Rm we now turn
to the situation when n = 1 and m≥ 2. For the sake of consistency with the
text, we consider functions

x : R→ Rn

and we let t ∈ R be the independent variable. If n = 2, we are considering
functions of the form:

x(t) = (x(t),y(t))
and if n = 3, we consider functions of the form:

x(t) = (x(t),y(t),z(t)).

We usually don’t graph the function x (even in the case when n = 2). In-
stead, we draw the image of x in Rn. The function x is often called a pa-
rameterization of its image.
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Example 4.1. x(t) = (cos(t),sin(t)) and x(t) = (cos(2t),sin(2t)) are both
parameterizations of the unit circle in R2. In what way(s) are they different?

Example 4.2. Suppose that f : R → R is a continuous function. Then
x(t) = (t, f (t)) is a parameterization of the graph of f in R2.

Example 4.3. Suppose that v and w are distinct vectors in Rn. Then x(t) =
tv+(1− t)w is a parameterization of the line through v and w. Restricting
x to t ∈ [0,1] is a parametrization of the line segment joining v and w.

Example 4.4. Suppose that v and w are distinct vectors in Rn. Then x(t) =
v+tw is a parameterization of the line through v that is parallel to the vector
w.

The derivative (in rectangular coordinates) of x(t) = (x1(t),x2(t), . . . ,xn(t))
is the matrix:

Dx(t) = x′(t) = (x′1(t),x
′
2(t), . . . ,x

′
n(t)) =


x′1(t)
x′2(t)

...
x′n(t)

 .

The vector x′(t) has components which are the instantaneous rates of change
of the coordinates of x. The speed of x is ||x′(t)|| and, if x′(t) is differen-
tiable, the acceleration of x(t) is x′′(t). We sometimes write v(t) = x′(t)
and a(t) = x′′(t).

Example 4.5. Find v(t) and a(t) for the curve x(t) = (t, t sin(t), t cos(t)).
Also find the speed of x(t) at time t.

Solution:

v(t) = (1,sin(t)+ t cos(t),cos(t)− t sin(t))

||v(t)|| =
√

1+ sin(t)cos(t)− t2 sin(t)cos(t)− t sin2(t)+ t cos2(t)
a(t) = (0,2cos(t)− t sin(t),−2sin(t)− t cos(t))

The next theorem should not be surprising.

Theorem 4.6. Suppose that x : R→ Rn is differentiable. Then x′(t0) is
parallel to the line tangent to the curve x(t) at t0.

Proof. We consider only n = 2; for n > 2, the proof is nearly identical. A
vector parallel to the tangent line to x(t) at t = t0 can be obtained as in
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1-variable calculus:
tangent vector = lim∆t→0

(
x(t0 +∆t)−x(t0)

)
/∆t

= lim∆t→0

((
x(t0 +∆t),y(t0 +∆t)

)
−
(
x(t0),y(t0)

))
/∆t

= lim∆t→0

(
x(t0+∆t)−x(t0)

∆t , y(t0+∆t)−y(t0)
∆t

)
=

(
lim∆t→0

x(t0+∆t)−x(t0)
∆t , lim∆t→0

y(t0+∆t)−y(t0)
∆t

)
= (x′(t),y′(t))
= x′(t)

�

Example 4.7. Let x(t)= (3cos(2t),sin(6t)). The image of x for t ∈ [−6π,6π]
is drawn in Figure 6. Find the equations of the tangent lines at the point
(−1.5,0).

FIGURE 6

Solution: The point (−1.5,0) is crossed by x at t1 = π/3 and at t2 = 2π/3.
The derivative of x is

x′(t) = (−6sin(2t),6cos(6t)).

At t1, we have:

x′(t1) = (−6sin(2π/3),6cos(2π)) = (−3
√

3,6).

Thus, one of the tangent lines has parameterization:

L1(t) = t(−3
√

3,6)+(−1.5,0).

At t2, we have:
x′(t2) = (3

√
3,6).

Thus, the other tangent line has a parameterization:

L2(t) = t(3
√

3,6)+(−1.5,0).
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5. DIRECTION VECTORS AND TANGENT SPACES

We saw in the last section that if x(t) is a curve in Rn, then x′(t) is a vector
parallel to the line tangent to the image of x at the point t. This is the most
we can hope for since we are always basing our vectors at 0. This is often
somewhat inconvenient (although it remains convenient for other reasons)
and so we need a work-around.

Here is the idea:

Example 5.1. Let x(t) = (cos t,sin t) and let t0 = (π/4,π/4). Notice that
x′(t0) = (1/

√
2,1/
√

2). If an object’s position at time t seconds is given
by x(t) and if at time t0 all forces stop acting on the object then 1 second
later, the object will be at the position given by x(t0) + x′(t0). That is,
x′(t0) denotes the direction the object will travel starting at x(t0). It would
be convenient to represent x(t0) by a vector with tail at x(t0) and head at
x(t0)+x′(t0).

FIGURE 7

To do this to each point p ∈ Rn we associate a “tangent space” Tp. This is
simply a copy of Rn such that p corresponds to the origin of Tp. In R2, the
standard basis vectors are denoted i and j. In R3 the standard basis vectors
are denoted i, j, and k. We usually think of Tp as an alternative coordinate
system for Rn which is positioned so that p ∈ Rn is at the origin.

Example 5.2. If p = (1,3) and if (2,5) ∈ Tp then (2,5) corresponds to the
point (1,3)+(2,5) = (3,8) in R2.

We think of Tp as the set of directions at p.
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Example 5.3. Let x(t) = (cos t,sin t) and let t0 = π/6. Suppose that an
object is following the path x(t) and that at time t0 all forces stop acting on
the object. Then the direction in which the object will head is

x′(t0) = (−sinπ/6,cosπ/6) = (−1/2,
√

3/2).

That is, the object will travel 1/2 units to the left of x(t0) and
√

3/2 units
up from x(t0) in 1 second.

Put another way, the point x(t0)+ x′(t0) is the same as the point x′(t0) ∈
Tx(t0).

5.1. Derivatives and Tangent Spaces. Suppose that f : Rn→ Rm is dif-
ferentiable at p ∈ Rn. Then L : Tp→ Tf (p) defined by

L(x) = D f (p)x
is a linear map between tangent spaces.

Example 5.4. Let p = (1,2)∈R2 and let f (x) = (1/4)(x2+y2,x2−y2) for
all x = (x,y). Let v = (−2,3) ∈ Tp. Sketch the point D f (p)v ∈ Tf (p).

Solution: Compute:

D f (x,y) =
(

x/2 y/2
x/2 −y/2

)
.

So that

D f (p) =
(

1/2 1
1/2 −1

)
.

Thus,

D f (p)v =

(
1/2 1
1/2 −1

)(
−2
3

)
=

(
2
−4

)
.

In R2, we plot D f (p)v by starting at f (p) = (5/4,−3/4) and then travel
over 2 and down 4. See Figure 8.

5.2. Other coordinate systems on tangent spaces. In R2, it is sometimes
useful to use polar coordinates instead of rectangular coordinates. In R3

it is sometimes useful to use either cylindrical or spherical coordinates in-
stead of rectangular coordinates. Using rectangular coordinates on tangent
spaces in R2, the vectors i, and j point in the directions in which x and y
(respectively) increase.

Now suppose that we are using polar coordinates on R2 and that we want
a basis of unit vectors er and eθ of Tp so that er points in the direction of
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FIGURE 8. On the left is an arrow representing v ∈ Tp. On
the right is an arrow representing D f (p)v in Tf (p).

increasing r and eθ points in the direction of increasing θ . Let p = (p1, p2).
Since r increases as x is moved radially from 0, starting at p and moving p1
horizontally and p2 vertically will increase r the greatest. That is, move in
the direction p1i+ p2j = p. We want er to be a unit vector, so let

er = (p1i+ p2j)/||p||= p/||p||.
Notice that er depends on p.

To find eθ , notice that we can parameterize the circle of radius ||p|| by
φ(t) = ||p||(cos t,sin t). As t increases, the angle θ is increasing. Suppose
that φ(t0) = p. Then φ ′(t0) ∈ Tp will be the direction of greatest increase of
θ . We have

φ
′(t0) = ||p||(−sin t0,cos t0) = (−p2, p1).

Thus, to increase θ (and keep r the same) we should move−p2 horizontally
and p1 vertically. That is, move in the direction−p2i+ p1j. The magnitude
of this vector is ||p|| and so we define

eθ = (−p2i+ p1j)/||p||.

5.3. Parameterizing interesting curves.

Example 5.5. Suppose that a circle of radius ρ cm rolls along level ground
so that the center of the circle is moving at 1 cm/sec. At time t = 0, the
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center of the circle is at (0,0) and the top of the circle is a point P = (0,ρ).
As the circle rolls, the point P traces out a curve x(t) (with P = x(0)). Find
an equation for x(t).

Solution: Let c(t) denote the center of the circle at time t. The circumfer-
ence of the circle is 2πρ and so the circle makes one complete rotation in
2πρ sec. At time t, the line segment joining c(t) to x(t) makes an angle of
−t/ρ +π/2 with the horizontal. That is, in Tc(t), x(t) is represented by the
point (ρ cos(−t/ρ + π/2),ρ sin(−t/ρ + π/2)). Thus, with respect to the
standard coordinates on R2:

x(t) = c(t)+
(

ρ cos(−t/ρ +π/2)
ρ sin(−t/ρ +π/2)

)
.

Since

c(t) = t
(

1
0

)
,

we have

x(t) =
(

t +ρ cos(−t/ρ +π/2)
ρ sin(−t/ρ +π/2)

)
.

FIGURE 9. The point P traces out a cycloid as the circle
rolls down the x axis.

Question: Is the cycloid a differentiable curve?

Example 5.6. Suppose that a circle C of radius r is moving so that the
center of C, c traces out the path (Rcos(t),Rsin(t)). As C moves, it rotates
counterclockwise so that it completes k revolutions per second. Suppose
that E is the East pole of C at time 0. What path does P trace out?

Solution: In Tc(t), E has coordinates (r cos2πkt,r sin2πkt). Thus in R2

coordinates, E has position

x(t) = c(t)+(r cos t,r sin t) = (Rcos t + r cos2πkt,Rsin t + r sin2πkt).



25

5.4. Kepler’s Laws of Motion.

Lemma 5.7 (Warm-up Problem). Suppose that x(t) is differentiable tnd that
||x(t)|| is constant. Then x is perpendicular to x′.

Proof. Since ||x|| is constant, x is a differentiable curve lying on a sphere.
For each t, x′(t) lies in the plane tangent to the sphere at x(t). The tangent
plane is perpendicular to the radius x(t) of the sphere.

Alternatively,

0 =
d
dt
||x||2 = d

dt
(x ·x) = 2

(
d
dt

x
)
·x = 2x ·x′.

�
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In this section we will use Newton’s law of universal gravitation and New-
ton’s second law to prove Kepler’s first law of planetary motion. Suppose
that the sun is at the origin 0 ∈R3 and that a planet is at vector x. The force
of gravitation is

F =− k
||x||3

x =− k
||x||2

u.

Here k > 0 is a constant of proportionality which is the product of the mass
of the sun, the mass of the planet, and the gravitational constant. The vector
u = x/||x|| is the unit vector in the direction of x.

We begin with two lemmas:

Lemma 5.8. We have

x′′ =− k
m||x||3

x =− k
m||x||2

u

where m is the mass of the planet.

Proof. Recall from Newton’s second law of motion that F = ma. We know
that a = x′′. The equations follow from the law of universal gravitation. �

Lemma 5.9. The motion of the planet lies in a plane containing the sun.

Proof. We will show that there is a constant vector c, such that x(t) is per-
pendicular to c (for all time t). Let c = x× x′. We will show that c is
constant by showing that d

dt c(t) = 0.

Well,

d
dt

c =
d
dt
(x×x′ =

(
d
dt

x
)
×x′+

(
x+

d
dt

x′
)
= x′×x′+x×x′′.

Recall that any vector crossed with itself is the zero vector, so

d
dt

c = x×x′′.

By the previous lemma:

x×x′′ = x×
(
− k

m||x||3
x
)
= 0,

as desired. �

Theorem 5.10 (Kepler’s First Law (simplified)). The orbit of the planet
around the sun is either an ellipse, a parabola, or a hyperbola.
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The challenge to proving this is to pick a useful coordinate system. In
particular, we want a coordinate system that doesn’t change with time. One
direction that doesn’t change with time is c = x×x′. We will consider that
to be the k direction, so that the planet is contained in the xy plane.

Proof. Without loss of generality, we may assume that the plane containing
the orbit of the planet is the xy plane, so that

c = x×x′ = αe3.

Step 1: Find c in terms of u, rather than in terms of x.

By the product rule:

x′ =
d
dt
(||x||u) = ||x||′u+ ||x||u′.

Hence,
c = ||x||u×

(
||x||′u+ ||x||u′

)
c = ||x|| · ||x||′ (u×u)+ ||x||2 (u×u′) .

Since, u×u = 0,
c = ||x||2(u×u′).

Step 2: x′× c = βu+d for some constants β ∈ R and d ∈ R3.

Notice that:

x′′× c =
(
− k

m||x||2 u
)
×||x||2 (u×u′)

= −β
(
u× (u×u′)

)
= β

(
(u×u′)×u

)
= β

(
(u ·u)u′− (u ·u′)u

)
= βu′

Also notice that:
d
dt (x

′× c) = x′′× c+x′× c′
= x′′× c

Consequently,
d
dt (x

′× c) = βu′
x′× c = βu+d.

�(Step 2)

Notice that x′×c lies in the xy plane as does u. Thus, d lies in the xy plane.

Rotate the entire coordinate system, so that d = de1. Then the angle be-
tween x (or u) and d is the polar angle θ(t) of x.
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We have
||c||2 = (x×x′) · c = x · (x× c).

Thus,
||c||2 = ||x||u · (βu+d) = β ||x||+ ||x||||d||cosθ .

Solving for ||x|| we obtain:

r = ||x||= ||c||2/(β + ||d||cosθ).

This is the polar equation for the planet’s orbit. It remains to check that this
is the polar form of a non-circular conic section. Some algebra shows that
the equation

r =
c2

(β +d cosθ)

is equivalent in rectangular coordinates to

(1− e2)x2 +2pex+ y2 = p2

where p > 0 and e > 0 are constants. If 0 < |e|< 1, the path is elliptical; if
|e|= 1, it is parabolic; and if |e|> 1 it is hyperbolic. �

5.5. Reparameterizing functions f : R→ Rn. Let f : I → Rn be a con-
tinuous function (where I ⊂ R is an interval). Suppose that φ : J → I is
continuous (where J ⊂R is an interval) and bijective. Then f ◦φ is a repa-
rameterization of f . Notice that f and f ◦ φ have the same image. We
usually will require both L and f to have nice differentiability properties. If
both f and φ are differentiable, notice that by the chain rule:

d
dt

f ◦φ(t) = f ′(φ(t))φ ′(t).

Since φ is a bijection, it is either increasing or decreasing. If it is increas-
ing, φ is an orientation-preserving reparameterization. Otherwise, it is
orientation-reversing. If φ is differentiable, then φ is orientation preserv-
ing if φ ′(t) > 0 and orientation reversing if φ ′(t) < 0. If φ is orientation
preserving, then f and f ◦φ have the same orientations. If φ is orientation
reversing, then f and f ◦φ have different orientations.

6. INTEGRATING OVER FUNCTIONS f : R→ Rn

In the last section we focused on differentiating functions φ : R→ Rn. In
MA 122, we studied how to integrate functions f : Rn→R. In this section,
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we will discuss how to integrate a function f : Rn → R over a curve φ .
Certainly one way to do this is to use 1-variable calculus to integrate:∫ b

a
f ◦φ(t)dt

where [a,b] is in the domain of φ . This is a fine thing to do in many situa-
tions, however, consider the following example:

Example 6.1. Let φ : [0,1]→R2 be given by φ(t) = (t,2t) and let ψ : R→
R2 be defined by ψ(t) = (t2,2t2). Notice that φ and ψ have the same image.
Let f : R2→ R be defined by f (x,y) = x2 + y. Then∫ 1

0
f ◦φ(t)dt =

∫ 1

0
t2 +2t dt = 4/3.

However, ∫ 1

0
f ◦ψ(t)dt =

∫ 1

0
4t4 +2t2 dt = 4/5+1/3

Example 6.2. Show that φ and ψ in the previous example are reparameter-
izations of each other.

Solution: Define p(t) = t2 and q(t) =
√

t. Both p and q are bijective func-
tions [0,1]→ [0,1]. Clearly, φ = ψ ◦q and ψ = φ ◦ p.

Thus, the integral
∫ b

a f ◦φ dt depends on the parameterization of the curve
φ , not just on its image. In many cases, we will want to have an integral
which depends only on the image of the curve, not on its parameterization.
That way, in applications, we will be free to pick a parameterization which
suits us and we won’t have to worry about what would happen if we picked
a different parameterization.

The following example demonstrates the important points.

Example 6.3. Let L be a straight piece of wire in R2 with endpoints at
(0,0) and at (1,2). Suppose that the temperature of the wire at point (x,y)
is f (x,y) = x2 + y. Find the average temperature of the wire.

Solution: Break the wire L into little tiny segments, L1, . . . ,Ln each of
length ∆s. Since L has a length of

√
5, ∆s =

√
5/n.

Then the average temperature of L is approximately

Tn =
1
n

n

∑
i=1

f (x∗i )
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In fact, the average temperature of L is exactly

T = lim
n→∞

1
n

n

∑
i=1

f (x∗i ).

Recall that 1/n = (∆s)/
√

5. Thus,

T = lim
n→∞

1√
5

n

∑
i=1

f (x∗i )∆s

This looks a lot like a limit of Riemann sums, so perhaps we can convert
this to a definite integral and use the Fundamental Theorem of Calculus.
Before we do that, however, notice that (up to proving that the limit exists)
we have a perfectly fine definition of the quantity

Ave. value of f on L =
1

length of L

∫
L

f ds.

We were able to define this integral without relying on a parameterization
of L!

To calculate this, however, we need a parameterization. Suppose that there
exists a parameterization φ : [0,

√
5]→ R2 of L such that at time t, the dis-

tance from (0,0) to φ(t) along L is exactly t. That is, “L is parameterized
by arc length”. Then, ∆s = ∆t =

√
5/n so

T =
1√
5

lim
n→∞

n

∑
i=1

f (φ(t∗i ))∆t =
1√
5

∫ √5

0
f (φ(t))dt.

Exercise: Find a parameterization of L by arclength.

Solution: Define φ̂(t) = (t,2t) and define φ(t) = φ̂(t/
√

5).

This example has all the important points except that at the very end we
had to pick a particular parameterization. You can imagine that in many
situations, finding a suitable parameterization might be challenging!. The
next sections will address that issue. In general, the nices parameterizations
are those which are parameterizations “by arc length”.

6.1. Arc-Length. Suppose that x : [a,b]→ R is a C1 curve. We wish to
find the length of x. The formula is
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Theorem 6.4. The arc length of x is∫ b

a
||x′(t)||dt.

Arc length is often denote by ∫
x

ds

where
ds = ||x′||dt

Example 6.5. Let x(t) = (t2,2t2) for t ∈ [0,1]. Then

||x′(t)||= ||(2t,4t)||=
√

4t2 +16t2 = 2t
√

5.

The arclength of x is∫
x

ds =
∫ 1

0
2t
√

5dt = t2
√

5
∣∣1
0 =
√

5.

Example 6.6. Let x(t) = (t, t2) for t ∈ [0,1]. Then∫
x

ds =
∫ 1

0

√
1+4t2 dt ≈ 1.47894

Here is why the formula for arclength is what it is. For convenience, we
assume that n = 2.

Partition [a,b] into n subintervals [ti−1, ti] for 1≤ i≤ n, each of length ∆t =
(b− a)/n. Joining the points x(ti−1) and x(ti) by straight lines creates a
polygonal approximation Pn to the image of x. The length of the polygonal
path is:

length(Pn) =
n

∑
i=1
||x(ti)−x(ti−1)||.

We define the arc length of x to be

L =
∫

x
ds = lim

n→∞

n

∑
i=1
||x(ti)−x(ti−1)||.

Now suppose that x(t) = (x(t),y(t)). Both x and y are C1 functions. Notice
that if we replace our current polygonal approximation with a polygonal
approximation have vertices (x(t∗i ),y(t

∗∗
i )), with t∗i , t

∗∗
i ∈ [ti−1, ti], we will

still have:

L =
∫

x
ds = lim

n→∞

n

∑
i=1
||(x(t∗i ),y(t∗∗i ))− (x(t∗i−1),y(t

∗∗
i−1))||.
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Here’s how to choose the values t∗i and t∗∗i . By the mean value theorem
(remember that?) There exists t∗i , t

∗∗
i ∈ [ti−1, ti] so that

x(t∗i ) = x′(t∗i )(ti− ti−1) = x′(t∗i )∆t
y(t∗∗i ) = y′(t∗∗i )(ti− ti−1) = y′(t∗∗i )∆t

Thus,

L= lim
n→∞

n

∑
i=1

√(
x′(t∗i )2 + y′(t∗∗i )2∆t =

∫ b

a

√
x′(t)2 + y′(t)2 dt =

∫ b

a
||x′(t)||dt.

We can also compute the arc length of paths which are piecewise C1. These
paths must be composed of a finite number of pieces.

Example 6.7. Compute the length of the curve x : [0,2]→ R defined by:

x(t) =
{

(t, t2) if 0≤ t ≤ 1
(t,(2− t)2) if 1≤ t ≤ 2

}
Solution: Let x1(t) = x(t) for 0≤ t ≤ 1 and let x2(t) = x(t) for 1≤ t ≤ 2.
Then ∫

x ds =
∫

x1
ds+

∫
x2

ds
=

∫ 1
0

√
1+4t2 dt +

∫ 2
1

√
1+4(2− t)2

≈ 2.95789

The following example shows that it is possible for a “finite” curve to have
infinite length.

Example 6.8. We will specify the graph of the curve f (x). On the interval
[ 1

n+2 ,
1
n ] erect a tent consisting of two straight lines with the bottoms of the

lines on the x axis and the top of the tent at the point ( 1
n+1 ,

1
n). See the figure

below:

1/n

1/n1/(n+1)1/(n+2)

Do this for each odd value of n, achieving the following graph:
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If you want an equation for f (x) do the following:

Begin by defining

gn(x) =



0 if x < 1
n+2

1
n( 1

n+1−
1
n)
(x− 1

n+2) if 1
n+2 ≤ x≤ 1

n+1

−1
n( 1

n−
1

n+1)
(x− 1

n) if 1
n+1 ≤ x≤ 1

n

0 if x > 1
n


Then define

f (x) =
∞

∑
n=0

g2n+1(x).

Notice that g2n+1(x) 6= 0 only if x ∈ [ 1
2n+3 ,

1
2n+1 ]. Thus, the sum defining

f (x) has only one term which is not zero.

Let’s show that the length of the graph of f is infinite. To do this, consider
the line segment in the interval [ 1

n+1 ,
1
n ] for an odd value of n. This line

segment has length

L =

√
(
1
n
)2 +(

1
n
− 1

n+1
)2 =

√
2
n2 +

1
(n+1)2 −

2
n(n+1)

.

Some algebra shows that L ≥ 1
n Similarly, the line segment in the interval

[ 1
n+2 ,

1
n+1 ] has length at least 1/(n+ 1). Consequently, the length of the

graph of f is at least
∞

∑
n=1

1
n
.

It is well known that this is the harmonic series which diverges to infinity.
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The text gives an example of a function f : [0,1]→ [−1,1] which is dif-
ferentiable on (0,1] but whose graph has infinite arclength. An example
similar to that one could be constructed from our example by rounding the
points of the graph above.

Next we show that reparameterizing a (rectifiable) curve does not change
arclength.

Lemma 6.9. Suppose that x : [a,b]→ Rn is a C1 path and that φ : [c,d]→
[a,b] is a C1 bijection. Then ∫

x
ds =

∫
x◦φ

ds.

Proof. By the chain rule,

||(x◦φ)′(t)||= ||x′(φ(t))φ ′(t)||= ||x′(t)|||φ ′(t)|.
Thus, ∫

x◦φ
ds =

∫ d

c
||(x◦φ)′(t)||dt =

∫ d

c
||x′(φ(t))|||φ ′(t)|dt

Assume that φ is orientation reversing. Then |φ ′(t)|=−φ ′(t), so∫
x◦φ

ds =−
∫ d

c
||x′(φ(t))||φ ′(t)dt.

Let u = φ(t). Then du = φ ′(t)dt. Since φ is orientation reversing, φ(c) = b
and φ(d) = a. Thus,∫

x◦φ
ds =−

∫ a

b
||x′(u)||du =

∫ b

a
||x′(u)||du =

∫
x

ds.

�

Consequently, when calculating arc length, we are free to choose any pa-
rameterization we want. We will frequently choose to “parameterize by
arc length”. Suppose that x : [a,b]→ R is C1 and that ||x′(t)|| > 0 for all
t ∈ [a,b]. Define s : [a,b]→ [0,L] by

s(t) =
∫ t

a
||x′(τ)||dτ.

Notice that s is a strictly increasing C1 function and so is an orientation pre-
serving bijection [a,b]→ [0,L]. Furthermore, it’s inverse function s−1 : [a,b]→
[a,L] is also strictly increasing bijection. Define y(t) = x◦ s−1.

Lemma 6.10. For t ∈ [a,b], the arclength of the curve y : [0, t]→ R is t. In
particular, ||y′(t)|| is constant on [a,b].
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Proof. Notice that:
s′(t) = ||x′(t)||

by the fundamental theorem of Calculus. Also, x(t) = (y ◦ s)(t) and so by
the Chain Rule:

x′(t) = y′(s(t))s′(t)
= y′(s(t))||x′(t)||

Consequently,

y′(s(t)) =
x′(t)
||x′(t)||

which means that ||y′(s(t))||= 1 for all t. Since s is a bijection, this means
that ||y′(t)||= 1 for all t. Hence, the arc length of y on [0, t] is∫ t

0
||y′(t)||dt =

∫ t

0
1dt = t.

�

Example 6.11. Let x(t) = (t2,3t2) for t ∈ [1,2]. Reparameterize x by arc
length.

Answer: By definition,

s(t) =
∫ t

1

√
4τ2 +36τ2 dτ

=
∫ t

1
√

40τ dτ

=
√

40(t2−1)

We need, s−1. Solving the previous equation for t we find:

t =
√

1+ s/
√

40

Thus,

s−1(t) =
√

1+ t/
√

40

To get y(t) which is the reparameterization of x by arclength, we plug this
in for t in the equation for x, getting:

y(t) = x◦ s−1(t)

=
((√

1+ t/
√

40
)2

,3
(√

1+ t/
√

40
)2 )

=
(
1+ t/

√
40,3(1+ t/

√
40)
)

To avoid much of this algebra, we will often simply write x(s) instead of
x◦s−1. This notation has the potential to be confusing. Thus, in the previous
example, the reparameterization of x(t) = (t2,3t2) by arc length is

x(s) =
(
1+ s/

√
40,3(1+ s/

√
40)
)
.
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Example 6.12. Let x(t) = (cos t,sin t,(2/3)t3/2) for t ≥ 3. Find x(s).

Answer: Compute:

||x′(t)||= ||(−sin t,cos t, t1/2)||=
√

1+ t.

Thus,

s=
∫ t

3

√
1+ τ dτ =(2/3)(1+t)3/2−(2/3)(1+3)3/2 =(2/3)(1+t)3/2−16/3.

Consequently,

t =
(

3(s+16/3)
2

)2/3

Thus,

x(s)=

(
cos
(

3(s+16/3)
2

)2/3

,sin
(

3(s+16/3)
2

)2/3

,(2/3)
(

3(s+16/3)
2

)4/3
)

Theorem 6.13. A straight line in Rn is the unique shortest distance between
two points.

Proof. The following proof contains the important ideas. We will show that
in R2, the straight line segment joining (0,0) to (1,0) is the unique shortest
path between those two points. Obviously, the distance between those two
points is 1. That is also the length of the straight line segment.

Suppose that x = (x,y) is a differentiable plane curve joining (0,0) to (1,0).
Assume that x′(t)> 0 for all t. We will show that the length of x is strictly
greater than 1.

We may assume that x is parameterized by arclength. The length of x is∫ 1

0
||x′(t)||dt

Suppose that x does not lie completely on the x axis (If it does, we are done.)
Then y′(t)2 is positive on some interval (a,b)⊂ [0,1]. Consequently,∫ 1

0 ||x′(t)||dt =
∫ 1

0

√
x′(t)2 + y′(t)2 dt

>
∫ 1

0

√
x′(t)2 dt

=
∫ 1

0 x′(t)dt
= x(1)− x(0)
= 1−0
= 1.

Thus, the length of x is greater than 1 and so x is not length-minimizing. �
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6.2. The geometry of space curves. In this section we will explore two
concepts: The curvature of space curves and a moving coordinate sys-
tem along a curve. Throughout, let x : [a,b]→ R3 be a C3 path such that
||x′(t)||> 0 for all t.

The unit tangent vector T = T(t) to x at time t is defined as

T =
x′(t)
||x′(t)||

.

Notice that if y = x◦φ is an orientation reparameterization of x then:

y′(t) = x′(φ(t))φ ′(t)

so
y′(t)
||y′(t)||

=
x′(φ(t))φ ′(t)
||x′(φ(t))||φ ′(t)

=
x′(φ(t))
||x′(φ(t))||

.

Thus, T depends only on the orientation and position of the curve x and not
on a particular (orientation-preserving) parameterization. Consequently, if
we parameterize x by arclength, then we can think of T as the rate of change
of x with respect to distance travelled. Also, recall that since T is always a
unit vector, it is perpendicular to T′.

Theorem 6.14. || d
dt |t=t0T(t)|| is the angular rate of change of the direction

of T as t increases.

Proof. On the interval [t0, t0 +∆t] the average angular rate of of change of
T is ∆θ/∆t. The limit

lim
∆t→0+

∆θ/∆t

is the angular rate of change of T. It follows from some trigonometry that

lim
∆t→0+

∆θ/||∆T||= 1

where ∆T = T(t0 +∆t)−T(t0).

Then,

lim
∆t→0+

∆θ/∆t = lim
∆t→0+

∆θ

||∆T||
||∆T||

∆t

= lim
∆t→0+

||∆T||/∆t

= ||dT
dt |t=t0||

�
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Based on this idea, we define the curvature κ of x in R3 to be the angular
rate of change of the direction of T as a function of distance. That is

κ(t) =
||dT/dt||

ds/dt
=
||dT/dt||
||x′(t)||

If x is parameterized by arc length, then κ(t) = ||dT/dt||.

Example 6.15. Find the curvature of a line x(t) = tv+b.

Answer: We have
T = x′/||x||= v/||v||.

Thus, dT/dt = 0 and so κ(t) = 0.

Example 6.16. The curvature of a circle of radius r > 0 is 1/r at each point
on the circle.

Example 6.17. Let φ(t) = (t,at2) be a parameterized curve. Find the cur-
vature of φ at t = 0.

Answer: We have: φ ′(t) = (1,2at) and T = (1,2at)/
√

1+4a2t2. Thus,

d
dt

T = (0,2a)/
√

1+4a2t2 +(1,2at)(−1/2)(1+4a2t2)−3/2(8a2t).

Thus,
||φ ′(0)||= 1

and

|| d
dt

T(0)||= ||(0,2a)||= 2a

Consequently,
κ(t) = 2a/1 = 2a

A C3 curve x can allow us to create a certain coordinate system (called the
moving frame) for the tangent spaces to Rn at the points of the curve.

One basis vector is T. (This requires that ||x′(t)||> 0.

Since T(t) is a unit vector for all time, it is always perpendicular to T′. We
take our second basis vector to be N = T′/||T′||. This requires that ||T′||>
0. N is called the principal normal vector to x. It follows from the chain
rule that N is an intrinsic quantity (it remains the same after an orientation
preserving parameterization change). To get a vector perpendicular to both
T and N we use the binormal vector

B = T×N.
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Example 6.18. Compute the moving frame and curvature for the path x(t)=
(sin t− t cos t,cos t + t sin t,2) with t ≥ 0.

Answer: We compute:

x′(t) = (cos t− cos t + t sin t,−sin t + sin t + t cos t,0) = (t sin t, t cos t,0)

||x′(t)|| =
√

t2 sin2 t + t2 cos2 t = t

T = x′(t)/||x′(t)|| = (sin t,cos t,0)

T′ = (−cos t,sin t,0)

||T′|| = 1

N = T′/||T′|| = (−cos t,sin t,0)

κ = ||T′||/||x′|| = 1/t

Finally, to compute B we need the cross product:

B = (sin t,cos t,0)× (−cos t,sin t,0) = (0,0,1).

It turns out that
d
dt

B =−τN

for some scalar function τ , called the torsion. The torsion measures how
much the curve twists out of a plane. If τ(t) = 0 for all t, then the curve lies
in a plane.



40

7. SCALAR FIELDS AND VECTOR FIELDS

A scalar field on Rn is simply a function f : Rn → R. We think of f as
assigning a number f (x) to each point x in Rn. Below is a depiction of the
scalar field f (x,y) = x2 + y2 on R2. To a point (x,y) ∈ R2, we assign the
number x2 + y2. Points which are assigned small numbers are colored blue
and points which are assigned large numbers are colored red.
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A vector field on Rn is a function F such that for every x ∈ Rn, F(x) is a
vector in Tx. Since Tx is simply a copy of Rn with origin at x, we can think
of F as the assignment of a vector F(x) in Rn to each point in Rn. Since we
think of this vector as living in Tx, we draw it as a vector in Rn with tail at
x. Below is drawn the vector field F(x,y) = (y,x).

-10 -7.5 -5 -2.5 0 2.5 5 7.5 10

-5

-2.5

2.5

5

A good way of thinking about a vector field is that it tells you the direction
and speed of flow of water in a huge water system. To see this, suppose that
we have an object in the stream at point (1,0) at time 0. Its position at time t
is given by φ(t)= (x(t),y(t)). If the vector field F(x,y)= (F1(x,y),F2(x,y))
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describes the direction and speed of the object, then

x′(t) = F1(φ(t))
y′(t) = F2(φ(t))

This a system of differential equations which we may or may not be able
to solve. If φ exists, it is called a flow on F . In the case of the vector field
F(x,y) = (y,x) the curve

φ(t) =
(
(et + e−t)/2
(et− e−t)/2

)
for t ≥ 0 is a flow on F beginning at (1,0) since

φ
′(t) =

(
(et− e−t)/2
(et + e−t)/2

)
.
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7.1. Gradient. Define the gradient by ∇ : C1(Rn)→ Rn by

grad f = ∇ f = (
∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xn
).

If we think of f ∈C1(Rn) as a scalar field, then ∇ (the gradient) converts the
scalar field into a vector field. The vectors point in the direction of greatest
increase of f .

Example 7.1. Consider f : R2→ R defined by f (x,y) = sinxcosy. Then
∇ f = (cosxcosy,−sinxsiny). Below is the vector field ∇ f on top of the
scalar field f . Contour lines have been drawn on the scalar field so that you
can see how the vectors ∇ f are perpendicular to the contour lines.
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7.2. Divergence. Let F : Rn → Rn be a differentiable vector field. Then
the divergence of F is

divF = ∇ ·F =
∂

∂x1
F1 + . . .+

∂

∂xn
Fn

The divergence converts a vector field into a scalar field.

Example 7.2. Let F(x,y)= (xy,cosxcosy). Then divF(x,y)= y−cosxsiny.
Below is plotted the vector field F and the scalar field divF. The arrows of
vector field are not drawn with the correct length (so that we can see all the
arrows). The red areas of the vector field have positive divergence and the
blue areas have negative divergence. The green area has zero divergence.
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7.3. Curl. Let F : R3→R3 be a differentiable vector field. Define the curl
of F to be

curlF = ∇×F =


∂

∂yF3− ∂

∂ zF2
∂

∂ zF1− ∂

∂xF3
∂

∂xF2− ∂

∂yF1



Example 7.3. Let F(x,y,z) = (−yx,x,0). Then F(x,y,z) = (0,0,1 + x).
Notice that the vector field F lies in the xy plane and that curlF is always a
vector perpendicular to the xy plane. Below is drawn the vector field F and
the scalar field ||curlF||. You can see that the farther from the origin a point
is, the greater the magnitude of the curl.
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7.4. The relationship of Grad, Div, Curl. In summary:

grad : scalar field → vector field
div : vector field → scalar field

curl : 3D vector field → 3D vector field

The following theorem is straightforward, but tedious to prove.

Theorem 7.4. (1) Suppose that f : R3→ R is a C2 scalar field. Then
curl(grad f ) = 0.

(2) Suppose that F : R3→R3 is a C2 vector field. Then div(curlF) = 0.



45

8. INTEGRATION OF SCALAR FIELDS AND VECTOR FIELDS ON Rn

OVER CURVES

Suppose that x : [a,b]→ Rn is a C1 curve. If f : Rn → R is continuous,
then define ∫

x
f ds =

∫ b

a
f (x(t))||x′(t)||dt.

Lemma 8.1. Suppose that y : φ(t) is a reparameterization of x. Then∫
y

f ds =
∫

x
f ds.

Proof. Assume that φ : [a,b]→ [c,d]. Recall from the chain rule that ||y′(t)||=
||x(φ(t))|||φ ′(t)|. Thus, if φ is orientation preserving:∫

y
f ds =

∫ d

c
f (xx(φ(t)))|x′(φ(t))||φ ′(t)dt.

Perform the last integral by letting u(t) = φ(t) so that du = φ ′ dt. That last
integral is then equal to∫ b

a
f (x(u))||x′(u)||du =

∫
x

f ds.

If φ is orientation reversing, then |φ ′(t)| = −φ ′(t) and so the work above
is largely the same except that in the substitution u(c) = b and u(d) =
a. Reversing the limits of integration kills the negative sign coming from
−φ ′(t). �

If F : Rn→ Rn is a continuous vector field, then define∫
x

F ·ds =
∫ b

a
F(x(t)) ·x′(t)dt.

The proof of the next lemma should be easy.

Lemma 8.2. If y = x◦φ then if φ is orientation preserving,∫
y

F ·ds =
∫

x
F ·ds.

If φ is orientation reversing, then∫
y

F ·ds =−
∫

x
F ·ds.
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8.0.1. Alternative Notation 1: Let T = x′/||x′||. This is the unit tangent
vector. Then,∫

x
F ·ds =

∫ b

a

F(x(t))x′(t)
||x′(t)||

|vectx′(t)||dt =
∫

x
(F ·T)ds

Thus the integral of a vector field F over a path x, “adds” up the tangential
component of F along the image of x.

8.0.2. Alternative Notation 2: Suppose that F = (M,N,P) and that x =
(x,y,z). Using the notation of differentials we can write

dx = x′(t)dt
dy = y′(t)dt
dz = z′(t)dt

F ·x′(t) = M dx+N dy+Pdz.

Consequently, we can write∫
x

F ·ds =
∫

x
M dx+N dy+Pdz.

The object M dx+N dy+Pdz is an example of something called a “differ-
ential form”.

Be careful to evaluate an integral like
∫

x M dx+N dy+Pdz correctly. If you
never use a parameterization for x, you’ve done something incorrectly.

Example 8.3. Let f (x,y)= 1/(x2+y2). Let F(x,y)=∇ f (x,y)=−2(x,y)/(x2+
y2)2. Let x(t) = (cos t,sin t) for 0≤ t ≤ 2π .

Notice that ||x′(t)||= 1.

Then, ∫
x

f ds =
∫ 2π

0
1/(cos2 t + sin2 t)dt =

∫ 2π

0
1dt = 2π.

And, ∫
x

F ·ds =
∫ 2π

0
−2
(

cos t
sin t

)
·
(
−sin t
cos t

)
= 0

9. THE FUNDAMENTAL THEOREM OF CALCULUS REVISITED

9.0.3. Another view of the FTC. Let I = [a,b] be an interval (oriented from
a to b) If F : I→ R is a differentiable function, then you learn in one vari-
able calculus that ∫

I

d
dt

F(t)dt = F(b)−F(a).
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To generalize this theorem to higher dimensions we introduce some new
terminology.

Terminology 1: If p ∈ R is a point, then say that p has “positive orien-
tation” if we place an arrow on it pointing to the right. The point p has
“negative orientation” if we put an arrow on it pointing to the left. If we
have chosen an orientation for p, we say that p is oriented. If A is a fi-
nite subset of R and if each point in A has been given an orientation (not
necessarily the same), we say that A is oriented.

Terminology 2: Suppose that p∈R is an oriented point and that f : R→R
is a function. If p has positive orientation, define

∫
p f = f (p). If p has

negative orientation, define
∫

p f =− f (p). If A = {p1, . . . , pn} is a finite set
of oriented points in R, define

∫
A = ∑

n
i=1
∫

pi
f .

Terminology 3: Suppose that a < b are real numbers. The interval [a,b]
is positively oriented and the interval [ba] is negatively oriented. (Think
of an arrow running from the small number a to the big number b. If the
arrow points right, the interval is positively oriented; if it points left it is
negatively oriented.) If I is an interval in R with endpoints a < b, then the
“boundary” of I, denoted ∂ I, is the set {a,b}. If I has positive orientation,
we assign the points of ∂ I the orientation with arrows pointing out of I. If
I has negative orientation, we assign the points of ∂ I, the orientations with
arrows pointing into I. We say that ∂ I has the orientation “induced” by the
orientation from I.

Suppose that I = [a,b] has positive orientation (i.e. a < b). Let J = [b,a]
be the same interval but with the opposite orientation. If f : R → R is
integrable, then by definition∫

I
f =

∫ b

a
f (x)dx and

∫
J

f =
∫ a

b
f (x)dx =−

∫
I

f .

The fundamental theorem of calculus can then be stated as

Theorem 9.1 (Fundamental Theorem of Calculus). Suppose that
F : R→ R is a C1 function. Let DF : R→ R be its derivative. Let
I ⊂ R be an oriented interval and give ∂ I the induced orientation.
Then ∫

I
DF =

∫
∂ I

F.

9.0.4. Returning to main lecture. We will construct a version of the funda-
mental theorem of Calculus in 2-dimensions. It will have the form:
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Theorem (Vaguely Stated Version of Green’s Theorem). Let D be a region
in R2. Let F : D→ R2 be a C1 vector field on D. Then:∫∫

D

“a derivative” of FdA =
∫

∂D
F ·ds

For the left side of the equation to make sense, it turns out that we need a
derivative of F which is a scalar function. Perhaps the idea of using divF
appeals to you? Well, there is a version of the theorem which will use
divF, but for this version we’ll use an adaptation of the curl. (Recall that
curlF = ∇×F.

Theorem (Less Vaguely Stated Version of Green’s Theorem). Let D be a
region in R2. Let F : D→ R2 be a C1 vector field on D Then:∫∫

D

(curlF) ·kdA =
∫

∂D
F ·ds.

To get the precise version of Green’s theorem we need to discuss what sort
of regions D are allowed and what ∂D means. We also need to review
double integration.
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10. DOUBLE INTEGRATION AND ITERATED INTEGRALS

We reviewed these. Typed notes are unavailable.

11. GREEN’S THEOREM

For this section, let D⊂R2 be a closed bounded region with ∂D a collection
of piecewise smooth simple closed curves.

Theorem 11.1 (Green’s Theorem). Let D be as above. Orient ∂D so that
D is on the left as ∂D is traversed. (Equivalently, N points into D.) Let
F : D→ R2 be a C1 vector field on D. Then,∫

∂D
F ·ds =

∫∫
D

(curlF) ·

0
0
1

 dA.

If we write F(x,y) = M(x,y)i + N(x,y)j, then the conclusion of Green’s
theorem can be written as:∫

∂D
M dx+N dy =

∫∫
D

(
∂N
∂x
− ∂M

∂y

)
dA.

Before proving (part of) Green’s theorem, we’ll look at some examples.

11.1. Examples relevant to Green’s Theorem.

Example 11.2. For this example, let D⊂R2be the solid square with corners
(1,−1), (1,1), (−1,1), and (−1,−1). We will need a parameterization of
∂D. Since ∂D is made up of 4 line segments, we can parameterize them as
follows. For each of them 0≤ t ≤ 1.

L1(t) = (1,2t−1)
L2(t) = (1−2t,1)
L3(t) = (−1,1−2t)
L4(t) = (2t−1,−1)

We will also need the derivatives:
L′1(t) = (0,2)
L′2(t) = (−2,0)
L′3(t) = (0,−2)
L′4(t) = (2,0)

Example 1a: Let F(x,y) = (−x,y).

Example 1a.i: Compute
∫

∂D F ·ds.
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Answer: We have:∫
∂D F ·ds =

∫ 1
0 F(L1(t)) ·L′1(t)dt +

∫ 1
0 F(L2(t)) ·L′2(t)dt+∫ 1

0 F(L3(t)) ·L′3(t)dt +
∫ 1

0 F(L4(t)) ·L′4(t)dt

=
∫ 1

0

(
−1

2t−1

)
·
(

0
2

)
+

(
2t−1

1

)
·
(
−2
0

)
+

(
1

1−2t

)
·
(

0
−2

)
+

(
1−2t
−1

)
·
(

2
0

)
dt

=
∫ 1

0 2(2t−1)+(−2)(2t−1)+(−2)(1−2t)+2(1−2t)dt
= 0

Example 1a.ii: Compute
∫∫
D
(curlF) ·kdA.

Answer: We have

curlF ·k =
∂ (y)
∂x
− ∂ (−x)

∂y
= 0.

Thus,
∫∫
D

curlF · kdA =
∫∫
D

0dA = 0. Notice that this matches the answer

from Example 1a.i, as predicted by Green’s theorem.

Example 1b: Let F(x,y) = (−y,x).

Example 1b.i Compute
∫

∂D F ·ds.

Answer: We have:∫
∂D F ·ds =

∫ 1
0 F(L1(t)) ·L′1(t)dt +

∫ 1
0 F(L2(t)) ·L′2(t)dt+∫ 1

0 F(L3(t)) ·L′3(t)dt +
∫ 1

0 F(L4(t)) ·L′4(t)dt

=
∫ 1

0

(
1−2t

1

)
·
(

0
2

)
+

(
−1

1−2t

)
·
(
−2
0

)
+

(
2t−1
−1

)
·
(

0
−2

)
+

(
1

2t−1

)
·
(

2
0

)
dt

=
∫ 1

0 2+2+2+2dt
= 8

Example 1b.ii Compute
∫∫
D
(curlF) ·kdA.

In this case, curlF ·k = 2. Thus,∫∫
D

curlF ·kdA =
∫ 1

−1

∫ 1

−1
2dA = 8.

Notice that this is the same as in Example 1b.i as predicted by Green’s
theorem.

Example 11.3. Let F(x,y) = (sinx, ln(1+ y2)). Let C be a simple closed
curve which is made up of 24 line segments in a star shape. Compute∫

C Fds.
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Answer: Let D be the region bounded by C. Notice that curlF = 0, so∫∫
D

curlF · kdA = 0. By Green’s theorem, this is also the answer to the

requested integral.

Example 11.4. Let φ(t) =
(

cos t sin(3t)
sin t cos(3t)

)
for 0 ≤ t ≤ π/2. Find the area

of the region D enclosed by φ .

Answer: Notice that φ travels clock-wise around D, we need it to go
counter-clockwise to use Green’s theorem. Changing the direction that φ

travels, changes the sign of a path integral of a vector field. Thus, by Green’s
theorem, the area of D is given by∫∫

D
1dA =−

∫
φ

F ·ds,

where F is a vector field having the property that curlF = (0,0,1). The
vector field: F(x,y) = 1

2(−y,x) has that property. Thus,∫∫
D 1dA = −

∫
φ

F ·ds
= −(1/2)

∫ π/2
0 (−sin t cos3t,cos t sin3t) ·φ ′(t)dt

= −(1/2)
∫ π/2

0 cos3t sin3t−3sin t cos t dt
= −(1/2)

∫ π/2
0 sin(6t)/2−3sin(2t)/2dt

= −(1/2)(1/6−3/2)
= 2/3.
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12. CONSERVATIVE PLANAR VECTOR FIELDS

12.1. Conservative Vector Fields have Path Independent Line Integrals.

Lemma 12.1. Suppose that F = ∇ f . Assume that f is C2 on an open set
D⊂ Rn. If A,B ∈ D and if x is any path joining A to B, then∫

x
F ·ds = f (B)− f (A).

Proof. Recall that ∇ f ·x′ = (D f )x′. Thus, F(x(t)) ·x′(t) = d
dt f (x(t)) by the

chain rule. Consequently, by the Fundamental Theorem of Calculus:∫
x F ·ds =

∫ b
a F(x(t)) ·x′(t)dt

=
∫ b

a
( d

dt f (x(t))
)

dt
= f (x(b))− f (x(a))
= f (B)− f (A).

�

Here is an application:

Suppose that P is a charged particle at x and that Q is a charged particle at
a with charges qP and qQ respectively. The force exerted by P on Q is

E(x,a) =
qPqQ(x−a)
||x−a||3

.

If we fix x and let a vary, E(a) is a gradient field with potential function

f (a) =
qPqQ

||x−a||
.

By the previous lemma, the work required to move Q from a to b is
1

||x−b||
− 1
||x−b||

In particular, it does not depend on the path taken by the particle.

If we have stationary particles P1, . . . ,Pn at x1, . . . ,xn respectively, each with
charge +1 and if Q is a charged particle at a, the force exerted by the sta-
tionary particles on Q is

E(a) = a∑
1

||xi−a||3

Since the gradient is additive, this electric field is also a gradient field with
potential function

f (a) = q∑
1

xi−a
.
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Given this set-up, if D is a collection of particles (possibly infinite) each
with charge +1 we define the potential function of the electric field gener-
ated by D to be

f (a) =
∫

D

1
||x−a||

where the integration is performed with respect to x.

Here is a specific example. Suppose that D is the line segment [−r,r] on
the y–axis in R2. How much work is required to move a charged particle
Q from a point a = (a,0) on the positive x axis to a point b = (b,0) on the
positive x axis, by a path with positive x–coordinates.

The work is the line integral of the electric field along the path taken by Q.
By the lemma above, we need only use the potential function to find that
the work is: ∫

D

1
||x−b||

ds−
∫

D

1
||x−a||

ds.

To solve this, let x(t) = (0, t) for −r ≤ t ≤ r be a parameterization of D.
Then the expression above equals∫ r

−r

1√
t2 +b2

− 1√
t2 +a2

dt.

12.2. When is a field conservative? For this section, we assume that D⊂
R2 is closed and bounded with ∂D piecewise C1. We say that D is sim-
ply connected if D consists of one piece (i.e. is connected) and if D “has
no holes”. If F : D→ R2 is a C1 vector field, we say that F has path-
independent line integrals if whenever x1 and x2 are paths in D which
both join A to B then the line integrals of F over x1 and over x2 produce the
same result.

Theorem 12.2 (Poincaré). Let D⊂R2 be simply connected, and let F : D→
R2 be a C1 vector field. Then, the following are equivalent:

(1) F is conservative (that is, F is a gradient field).
(2) F has path independent line integrals on D
(3) curlF = 0.

Proof. (1)⇒ (3)

This is a simple calculation which you should do.

(3)⇒ (2)

We assume by hypothesis that curlF = 0. Let x1 and x2 be two paths which
join A to B. For simplicity, assume that the paths do not intersect except at
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A and B. Then the images of x1 and x2 form the boundary of a region R⊂D
since D is simply connected. Giving the boundary the correct orientation
amounts to traversing one of x1 and x2 in the given direction and traversing
the other in the reverse direction. Thus, by Green’s theorem:∫

x1

F ·ds−
∫

x2

F ·ds =±
∫

∂R
F ·ds =

∫∫
R

curlF ·kdA.

By our initial hypothesis that curlF = 0, we have shown that this last inte-
gral is 0. Consequently, the line integrals over x1 and over x2 have the same
values.

(2)⇒ (1)

We need to define a C2 potential function f : D→ R2 for F. To that end,
let a ∈ D, be considered as a basepoint. If x ∈ D, choose a path φ joining a
to x and define f (x) =

∫
φ

F ·ds. Notice that definition of f requires that the
path φ be chosen, but that the choice does not matter – any two paths will
give the same answer, by our hypothesis.

We need to show that f is differentiable and that ∇ f = F. We concern
ourselves only with the interior of D. Since ∂D is C1, around each point
x ∈ D−∂D, there exists an open disc centered at x and contained in D. Let
x+h be a vector in this disc. Let h = ||h||. Let φ be a path from a to x and
let ψ be a straight line path in D from x to x+h. Then:

1
h( f (x+h)− f (x) =

1
h

(∫
φ

F ·ds+
∫

ψ
F ·ds−

∫
φ

F ·ds
)

=
1
h
∫

ψ
F ·ds

Since ψ is a straight line path, we may assume that ψ(t) = x+ th so that
ψ ′(t) = h. Then,

1
h

∫
ψ

F ·ds =
1
h

∫ 1

0
F(ψ(t)) ·hdt.

Write h = hu with u a unit vector. Then
1
h
∫

ψ
F ·ds =

1
h
∫ 1

0 F(ψ(t)) · (hu)dt =∫ 1
0 F(ψ(t)) ·udt =

When h is very small, F(ψ(t)) ≈ F(x) with the approximation improving
as h→ 0. Thus, if u is constant, we have the directional derivative of f in
the u direction as:

lim
h→0

1
h
( f (x+h)− f (x)) = F(x) ·u
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By making wise choices of h, we see that ∂ f
∂x = F · i and ∂ f

∂y = F · j. Conse-
quently, ∇ f = F. Furthermore, because F is C1, f is differentiable and is
C2. �



56

12.3. Divergence Theorem in the Plane.

12.4. Interpreting Divergence and Curl.

13. PARAMETERIZED SURFACES

** Normal Vectors** **Smooth surfaces**

13.1. Orientations. ** Normal orientations** **Intrinsic orientations**

13.2. Surface Area of a Smooth Parameterized Surface.

13.3. Reparameterizations.

Definition 13.1. Suppose that D and E are 2-dimensional regions in R2

with C1 boundary. Let h : E→ D be a function such that:

(1) h is a surjection.

(2) except on a finite set of points, h is C1

(3) Let P be the set of points such that the determinant of the derivative
of h is 0. If P is infinite, then P ⊂ ∂E.

Then we say that h is a change of coordinates function.

Example 13.2. Let D be the disc 0 ≤ s2 + t2 ≤ 4 in the s− t plane. Let E
be the rectangle [0,2π]× [0,2] in the u− v plane. Define:(

s
t

)
= h(u,v) =

(
vcosu
vsinu

)
.

Claim: h is a change of coordinates function.

Clearly, h is a surjection and h is C1. Notice that:

Dh(u,v) =
(
−vsinu cosu
vcosu sinu

)
.

Thus, detDh(u,v) = −v. As long as v > 0, detDh(u,v) 6= 0. The set P =
{(0,v)} lies in ∂E. Thus, h is a change of coordinates function.

Lemma 13.3. Suppose that E is connected and that h : E → D is a change
of coordinates function. If x1 and x2 are points in E at which h is C1 and
with detDh(x1) 6= 0 and detDh(x2) 6= 0, then either both detDh(x1) and
detDh(x2) are positive, or both are negative.
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Proof. Let P be the set of points at which either h is not C1 or at which
detDh is zero. By our hypotheses on P and the fact that E is connected,
there is a continuous path in E−P joining x1 to x2. Since h is C1 on E−P ,
detDh varies continuously along the path. Since the path misses the places
where detDh(u,v) = 0, detDh(x1) and detDh(x2) are both positive or both
negative. �

Definition 13.4. If h : E→D is a change of coordinates function, and if E is
connected then h is orientation preserving if detDh> 0 on all points where
detDh is defined and non-zero. Otherwise, h is orientation reversing.

Definition 13.5. Suppose that X : D→R3 is a surface and that Y : E→R3

is a surface such that there exists a change of coordinates function h : E→
D with Y = X◦h. Then Y is a reparameterization of X.

Example 13.6. Let X(s, t) =

 s
t

s2 + t2

 for 0≤ s2 + t2 ≤ 4. Let Y(u,v) =vcosu
vsinu

v2

. Notice that X and Y are parameterizations of the same parab-

oloid. Define h(u,v) =
(

vcosu
vsinu

)
. Then Y is a reparameterization of X by

an orientation reversing change of coordinates.

Lemma 13.7. Suppose that X : D→ R3 and that h : E→ D is a change of
coordinates function. Let Y = X◦h. Let NX and NY be the normal vectors
of X and Y respectively. Then,

NY(u,v) = (detDh(u,v))NX(h(u,v)).

Proof. We simply provide a sketch for those who have taken Linear Alge-
bra. The book provides a different method.

Let S = X(D) = Y(E). Assume that both X and Y are smooth, so that
there exists a tangent plane T Sp to S at p = X(s, t) = Y(u,v). Assume that
coordinates on R3 have been chosen so that T Sp is the xy-plane in R3.

We think of T S(u,v) as lying in the tangent space Tp in R3 at p. Since both
X and Y are smooth, the sets of vectors {Ts,Tt} and {Tu,Tv} are each a
basis for T Sp. Identifying T Sp with both the s− t plane and with the u− v
plane.

By the chain rule,

DY(u,v) = DX(h(u,v))Dh(u,v).
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We have

DY(u,v) =
(
Tu(u,v) Tv(u,v)

)
DX(h(u,v)) =

(
Ts(h(u,v)) Tt(h(u,v))

)
Recall that the absolute value of the determinant of a 2× 2 matrix is the
area of the parallelogram formed by its column vectors. Recall also that
determinant is multiplicative. Thus, by taking determinants and absolute
values we get:

( Area of parallelogram formed by Tu(u,v) and Tv(u,v) ) = ( Area of parallelogram formed by Ts(h(u,v)) and Tt(h(u,v)) )|detDh(u,v)|
||NY(u, ,v)|| = ||NX(h(u,v))|| |detDh(u,v)|.

Since we have arranged that T Sp is the xy-plane, both NY(u,v) and NX point
in the ±k direction. That is:

NY(u, ,v) =

 0
0

detDY(u,v)



NX(h(u,v)) =

 0
0

detDX(h(u,v))


Since, detDY(u,v) = detDX(h(u,v))detDh(u,v), the result follows. �

Thus, if X and Y are both smooth and connected surfaces and if Y is a
reparameterization of X by a change of coordinates function h, then Y has
the same normal orientation as X if and only if there exists a point (u,v)
with detDh(u,v)> 0.

Example 13.8. Let X(s, t) =

 s
t

s2 + t2

 for 0≤ s2 + t2 ≤ 4. Let Y(u,v) =vcosu
vsinu

v2

. Notice that X and Y are parameterizations of the same parab-

oloid. Define h(u,v) =
(

vcosu
vsinu

)
. Notice that Y = X ◦ h where h(u,v) =

(vcosu,vsinu).



59

Calculations show that:

NX =

−2s
−2t

1



NY =

2v2 cosu
2v2 sinu
−v


Recalling that detDh(u,v) = −v, we see that the lemma gives us the same
relationship between NX and NY.

13.4. Surface Integrals: Definitions and Calculations. Suppose that X : D→
R3 is a smooth surface. Suppose that f : X(D)→ R and f : X(D)→ R3

are C1. Then define:∫∫
X F · dS =

∫∫
D
(F◦X) ·NdA∫∫

X f dS =
∫∫
D
( f ◦X) ||N||dA.

Example 13.9. Let Y(u,v) =

vcosu
vsinu

v2

 for (u,v) ∈ E where E = [0,2π]×

[0,4]. Let F(x,y,z) =

−y
x
0

. Calculate
∫∫

X F ·dS.

Recall that NY =

2v2 cosu
2v2 sinu
−v

. Thus,

∫∫
Y FdS =

∫∫
E F(Y(u,v)) ·NY dA

=
∫ 4

0
∫ 2π

0

−vsinu
vcosu

0

 ·
2v2 cosu

2v2 sinu
−v

 dudv

=
∫ 4

0
∫ 2π

0 0dudv
= 0.

You may wonder how surface integrals change under reparameterization.
The following theorem provides the answer:
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Theorem 13.10. Suppose that X and Y are parameterized connected sur-
faces and that Y is a reparameterization of X. If the change of coordinate
function h is orientation-preserving, let ε = +1. If h is orientation revers-
ing, let ε = −1. Let f be a C1 scalar field and let F be a C1 vector field,
both defined in a neighborhood of the image of X and Y. Then:∫∫

Y f dS =
∫∫

X f dS∫∫
Y F · dS =

∫∫
X F · dS

Proof. We will need the change of variables theorem:

Theorem. Suppose that D and E are regions in the st plane and the uv
plane respectively and that h : E → D is a change of coordinates function.
Let g : D→ R be C1. Then∫∫

E
g◦h |detDh(u,v)|dudv =

∫∫
D

gdsdt

Both equations are a rather immediate application of this. We prove only
the second, in the case when h is orientation reversing.

∫∫
Y FdS =

∫∫
E(F◦Y) ·NY dudv

=
∫∫

E((F◦X)◦h) · (NX ·h)(detDh(u,v))dudv
=

∫∫
D(F◦X) ·NX dsdt

=
∫∫

X F ·dS.

The second to last equality comes from an application of the change of
variables theorem. �

14. FLUX

If F : R3→ R3 is a vector field and if S ⊂ R3 is an oriented surface, with
normal orientation n, then the flux of F across S is, by definition,

∫∫
X F ·dS,

where X is any parameterization of S, with normal vector N pointing in the
same direction as n.

Informally, the flux of F across S, measures the rate of fluid flow across S.

Example 14.1. Let S be the paraboloid which is the graph of f (x,y) =
x2 + y2 for x2 + y2 ≤ 4. Orient S. If F(x,y,z) = (−y,x,0), then the flux of F
across S is 0 since the vector field is tangent to S. (Notice that the flow lines
for F which contain points of S, actually lie on S.
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Example 14.2. Let S be the unit sphere in R3 with outward pointing normal.
Let F(x,y,z)= (x,y,z). Then the flux of F across S is simply the surface area
of S (which is 4π/3) since, at (x,y,z) ∈ S.

To see this, let X : D→R3 be a smooth parameterization of S with outward
pointing normal vector. Noticing that ||F(X)||= 1, we have:∫∫

X F ·dS =
∫∫

D F(X) ·Ndsdt

=
∫∫

D

(
F(X) · N

||N||

)
||N||dsdt

=
∫∫

D ||F(X)||||N||dsdt
=

∫∫
D ||N||dsdt

=
∫∫

X dS

and this last expression is the surface area of S.

This last example can be generalized to:

Theorem 14.3. Suppose that S is a compact surface in R3 and that F is
a non-zero C1 vector field defined in a neighborhood of S such that for
each (x,y,z) ∈ S, F(x,y,z) is perpindicular to S. If ||F(x,y,z)|| > 0 for all
(x,y,z) ∈ S, then the flux of F across S is simply ±

∫∫
S ||F||dS.

Example 14.4. Suppose that a thin sphere of radius 1 centered at the origin
is given a constant +1 charge. Then the sphere generates an electric field
given by:

E(a,b,c) = ∇(a,b,c) ·
∫∫

S
f dS,

where f (x,y,z) = −1
(a−x)2+(b−y)2+(c−z)2 .

By the theorem, this does not depend on a parameterization for S.

15. STOKES’ AND GAUSS’ THEOREMS

Definition 15.1. Suppose that S is a piecewise smooth surface which has
normal orientation n (a unit vector). Let γ be a component of ∂S. Orient γ .
We say that γ has been oriented consistently with n if it is possible to put
a little triangle on γ , give the edges of the triangle arrows circulating in the
direction of the orientation of γ , use the right hand rule and obtain a normal
vector pointing in the direction of n. We also say that ∂S has been given the
orientation induced from the orientation of S.

Example 15.2. Suppose that A ⊂ R3 is an oriented annulus (i.e. cylinder)
with two boundary components. Those boundary components must have
opposite orientations.
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Theorem 15.3 (Stokes’ Theorem). Let S be a compact, oriented, piecewise
smooth surface in R3. Give ∂S the orientation induced by the orientation of
S. Let F be a C1 vector field defined on an open set containing S. Then,∫∫

S
(curlF) ·dS =

∫
∂S

F ·ds.

Theorem 15.4 (Divergence Theorem/Gauss’ Theorem). Let D be a com-
pact solid region in R3 such that ∂D consists of piecewise smooth, closed,
orientable surfaces. Orient ∂D with unit normals pointing out of D. Sup-
pose that F is a C1 vectorfield defined on an open set containing D. Then:∫∫∫

D

divF ·dS =
∫∫
∂D

F ·dS

15.1. Gravity. Suppose that for each point x ∈ R3, there is a point mass
ρ(x). Then the gravitational field exerted by x is:

F(r) = (Gρ(x))
x− r
||x− r||3

.

where G is the gravitational constant. It is easy to check that the divergence
of F with respect to r (denoted ∇r ·F is 0.

Fundamental to the study of gravitation is:

Theorem 15.5 (Gauss’ Law). Let V be a 3–dimensional region. The flux
of the gravitational field exerted by V across ∂V is:∫∫

∂V
F ·dS =−4πG

∫∫∫
V

ρ dV

Proof. Case 1: There exists a point x ∈ V with ρ(x) 6= 0 and all other
points in V have zero mass. Let S be a small sphere of radius a enclosing x
contained inside V . then∫∫

Sa
F ·dS =

∫∫
Sa

F ·ndS
= Gρ(x)

∫∫
S

1
||x−r||3 (x− r) · −1

||x−r||(x− r)dS

= −Gρ(x)
∫∫

S
1

||x−r||3 dS

= −Gρ(x) 1
||x−r||3

∫∫
S dS

= −Gρ(x(4π)

Now notice that since ∇r ·F = 0, by the divergence theorem, we have:∫∫
∂V

F ·dS =
∫∫

S
F ·dS =−4πGρ(x).
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Case 2: There is a 3-dimensional region R⊂V with non-zero mass (possi-
bly all of V ) then by superposition:∫∫

∂V
F ·dS =−4πG

∫∫∫
R

ρ dV.

�

We can now prove an important theorem:

Theorem 15.6 (Shell Theorem). Suppose that W is a 3–dimensional region
of constant mass which is the region between a sphere of radius a ≥ 0 and
a sphere of radius b > a, both centered at the origin.

Then the following hold:

(1) For a point r, with ||r||> b, the force of gravity is the same as if W
were a point mass.

(2) In either case, for a point r with a < ||r|| < b, the force of gravity
varies linearly with distance from the origin.

(3) For a point r with ||r||< a, the force of gravity is zero.

Proof. Let r be a point in R3. By the principal of superposition, the gravi-
tational field at r is a vector that points toward the origin. That is, if r 6= 0,

F(r) =− f (r)
r
||r||

where f (r) is a non-negative scalar function depending only on the magni-
tude r of r.

Let S be a sphere of radius r bounding a ball V centered at 0. We have:∫∫
S F ·dS = f (r)

∫∫
S
−x
||x|| dS

= −4πr2 f (r).

By the differential form of Gauss’ Law and the divergence theorem , we
also have: ∫∫

S F ·dS = −4πG
∫∫∫

B ρ dV

Thus,

−4πr2 f (r) =−4piG
∫∫

B
ρ dV

Thus:

• If r > b, for all x ∈V −W , ρ(x) = 0, so the first result follows.
• If a < r < b, we have the second result.
• If r < a we have the 3rd result, since for all x ∈ B, ρ(x) = 0.
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16. COHOMOLOGY THEORY

In this section we work entirely on subsets of R3. Throughout we assume
that whenever every appropriate that the objects under consideration are C1

or C2.

Theorem 16.1. Suppose that F and G are vector fields defined on D and
that whenever φ is a simple closed curve in D, then

∫
φ

F · ds =
∫

φ
G · ds.

Then there exists a scalar field h : D→ R such that F = G+∇ f .

Proof. Recall from the proof of Poincaré’s Theorem that if a vector field
has path independent line integrals then it is a gradient field. In particular,
this result did not rely on D being simply connected. Let H = F−G.

Claim: H has path independent line integrals.

Assume that φ and ψ are two paths joining a point a to a point b. Let C
be the closed curve obtained by traversing φ and then traversing ψ in the
reverse direction. For simplicity, we assume that C is simple. Then,∫

φ

H ·ds−
∫

ψ

H ·ds =
∫

C
H ·ds =

∫
C
(F−G) ·ds =

∫
C

F ·ds−
∫

C
G ·ds = 0.

Thus, by Poincaré’s Lemma, there exists a scalar function f : D→ R such
that F−G = ∇ f as desired. �

Corollary 16.2. Let D = R2 − {0}. Suppose that F : D → R and that
curlF = 0. Then there exists a constant k ∈ R and a scalar field f : D→ R
such that

F(x,y) =
k

x2 + y2

(
−y
x

)
+∇ f (x,y).

Proof. Let C be a counter-clockwise oriented simple closed curve enclos-
ing the origin. Define k = 1

2π

∫
C F · ds. Then evaluating both F and G =

k
x2+y2

(
−y
x

)
around C produces the same answer. Since curlF = 0 inte-

grating F and G over any other simple closed curve containing the origin
produces k (by Green’s theorem and some topology). If C is a simple closed
curve not enclosing the origin, since curlF = 0 and since curlG = 0, F and
G once again have the same contour integrals. Thus, by the theorem F−G
is a gradient field. �

Let cycle2(D) be the set of all vector fields on a region D with 0 curl.
cycle2(D) is a real vector space. Let boundary1(D) be the set of all gradient
fields on D. boundary1(D) is also a real vector space. Since curl◦grad =
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0, boundary1(D) ⊂ cycle2(D). Let H1(D) be the quotient vector space
cycle2(D)/boundary1(D). That is, two vector fields with 0 curl on D are
considered “the same” if they differ by a gradient field. We conclude from
the above example that H1(R2 − {0}) is a 1–dimensional vector space.
From Poincaré’s Theorem, we know that H1(R2) is a 0–dimensional vector
space (i.e. every vector field with 0 curl is a gradient field).

You might enjoy this (challenging) exercise: Let D be the result of removing
n points from R2. Prove that H1(D) is n–dimensional.


