The final exam is cumulative. The following problems concern only material since Exam 2. You should also use previous exams, practice exams, quizzes, and homework to study.

(1) Find a parameterization of the surface formed by the graph of $z = x^2 - y^2$ with (x, y) in the triangle in the xy-plane formed by the x-axis, the y-axis, and the line y = -x + 1.

Solution: How about:

$$\mathbf{X}(s,t) = \begin{pmatrix} s \\ t \\ s^2 - t^2 \end{pmatrix}$$

with $0 \le s \le 1$ and $0 \le t \le -s+1$?

(2) Is the surface in the previous problem a smooth surface? If no, at what points is it not smooth?

Solution: The answer depends (somewhat) on your parameterization. The answer here is based on the parameterization above.

You can calculate that

$$\mathbf{T}_{s} = (1,0,2s)$$

 $\mathbf{T}_{t} = (0,1,-2t)$
 $\mathbf{N} = (-2s,2t,1)$

Since N is never 0, and since X is obviously C^1 , X is a smooth surface.

(3) Find a parameterization of the surface formed by rotating the curve $\binom{\cos t + 5}{2\sin t}$ with $0 \le t \le 2\pi$ around the *y*-axis.

Solution: How about

$$\mathbf{X}(s,t) = \begin{pmatrix} \cos s(\cos t + 5) \\ 2\sin t \\ \sin s(\cos t + 5) \end{pmatrix}?$$

(4) Consider the surface

$$\mathbf{X}(s,t) = \begin{pmatrix} 2\sin 3t + t \\ \cos 2s \\ t^2 + s^2 \end{pmatrix}, \quad 0 \le t \le \pi/4, \quad 0 \le s \le \pi$$

Find the tangent and normal vectors to **X** at the point $(\pi/6, \pi/6)$. Is the surface smooth?

Solution:

We have

$$\mathbf{T}_s = (0, -2\sin 2s, 2s)$$

 $\mathbf{T}_t = (6\cos(3t) + 1, 0, 2t)$
 $\mathbf{N} = (-4t\sin 2s, 2s(6\cos 3t + 1), 2\sin 2s(6\cos 3t + 1)$

Plug $(\pi/6, \pi/6)$ into the above equations to get:

$$\mathbf{T}_{s} = (0, -\sqrt{3}, \pi/3)$$

 $\mathbf{T}_{t} = (1, 0, \pi/3)$
 $\mathbf{N} = (-\pi\sqrt{3}/3, \pi/3, \sqrt{3})$

Since $N(\pi/6, \pi/6) \neq 0$, the surface is smooth at that point.

(5) Suppose that $\mathbf{F} \colon \mathbb{R}^3 \to \mathbb{R}^3$ is a C^1 vector field, and that $\mathbf{X} \colon D \to \mathbb{R}^3$ is a smooth, oriented surface. Let $h \colon E \to D$ be a smooth, orientation reversing change-of coordinate function. Prove that

$$\iint_{\mathbf{X}} \mathbf{F} \cdot d\mathbf{S} = -\iint_{\mathbf{X} \circ h} \mathbf{F} \cdot d\mathbf{S}.$$

Solution: See your course notes or adapt the solution to the next problem.

(6) Suppose that $f: \mathbb{R}^3 \to \mathbb{R}$ is a \mathbb{C}^1 vector field, and that $\mathbf{X}: D \to \mathbb{R}^3$ is a smooth, oriented surface. Let $h: E \to D$ be a smooth change-of coordinate function. Prove that

$$\iint_{\mathbf{X}} f \, dS = \iint_{\mathbf{X} \circ h} f \, dS.$$

Solution: By definition,

$$\iint_{\mathbf{X} \circ h} f \, dS = \iint_E f(\mathbf{X} \circ h) ||\mathbf{N}|| \, dA$$

Let $Y = X \circ h$. It is a fact (proved in class) that $N_Y = (\det Dh)N_X \circ h$. Thus,

$$\iint_{\mathbf{X} \circ h} f \, dS = \iint_{E} f(\mathbf{X} \circ h) ||\mathbf{N}_{\mathbf{X}} \circ h|| \, |\det Dh| \, dA$$

By the change of coordinates theorem, this give us:

$$\iint_{\mathbf{X} \circ h} f \, dS = \iint_{E} f(\mathbf{X}) ||\mathbf{N}_{\mathbf{X}}|| \, dA$$

By the definition of surface integral we then get our result:

$$\iint_{\mathbf{X} \circ h} f \, dS = \iint_{\mathbf{X}} f \, dS.$$

(7) Suppose that $\mathbf{X} \colon D \to \mathbb{R}^3$ is a smooth, oriented surface with unit normal \mathbf{n} . Suppose that $\mathbf{F} \colon \mathbb{R}^3 \to \mathbb{R}^3$ is a \mathbf{C}^1 vector field. Prove that

$$\iint_{\mathbf{X}} \mathbf{F} \cdot d\mathbf{S} = \iint_{\mathbf{X}} \mathbf{F} \cdot \mathbf{n} \, dS.$$

Solution: We have $\mathbf{n} = \mathbf{N}/||\mathbf{N}||$. Thus,

$$\iint_{\mathbf{X}} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} (\mathbf{F} \circ \mathbf{X}) \cdot \mathbf{N} dA
= \iint_{D} (\mathbf{F} \circ \mathbf{X}) \cdot (||\mathbf{N}||\mathbf{n}) dA
= \iint_{D} (\mathbf{F} \circ \mathbf{X}) \cdot \mathbf{n} ||\mathbf{N}|| dA
= \iint_{\mathbf{X}} \mathbf{F} \cdot \mathbf{n} dS.$$

(8) Use the previous result to integrate the vector field $\mathbf{F}(x,y,z) = (x,y,z)$ over the unit sphere (with outward normal) in \mathbb{R}^3 .

Solution: At a point (x, y, z) on the unit sphere S, there is the normal $\mathbf{n} = (x, y, z)$. Thus, $\mathbf{F} \cdot \mathbf{n} = x^2 + y^2 + z^2$. Since (x, y, z) is on the unit sphere, $\mathbf{F} \cdot \mathbf{n} = 1$. Thus,

$$\iint_{S} \mathbf{F} dS = \iint_{S} \mathbf{F} \cdot \mathbf{n} dS = \iint_{S} 1 dS.$$

This last quantity is just the surface area of the sphere, which is 4π .

(9) Let *S* be the disc of radius 1 centered at (1,0,0) in \mathbb{R}^3 which is parallel to the *yz*-plane. Orient *S* with normal vector pointing in the direction of the postive *x*-axis. Use the definition of surface integral to calculate the flux of $\mathbf{F}(x,y,z) = (-xy,yz,xz)$ through *S*.

Solution: Parameterize *S* as:

$$\mathbf{X}(s,t) = \begin{pmatrix} 1 \\ s \\ t \end{pmatrix}$$

with (s,t) in the region D defined by $0 \le s^2 + t^2 \le 1$. It is easy to calculate $\mathbf{N} = (1,0,0)$. Then,

$$\mathbf{F} \cdot \mathbf{N}(x, y, z) = -xy.$$

Thus, by the definition of surface integral, the flux of **F** through S is

$$\iint_D \mathbf{F} \cdot \mathbf{N}(\mathbf{X}(s,t)) dA = \iint_D -s \, ds \, dt.$$

Change to polar coordinates by setting $s = r\cos\theta$ and $t = r\sin\theta$. Then the integral above is equal to (by the change of coordinates theorem):

$$\int_0^1 \int_0^{2\pi} -r^2 \cos\theta \, d\theta dr$$

Since $\int_0^{2\pi} \cos \theta d\theta = 0$, the flux equals 0.

(10) Use the same surface S and F as in the previous problem, but now use Stoke's theorem to calculate the flux of the curl of the previous problem.

Solution: By Stoke's theorem,

$$\iint_{S} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = \int_{\partial S} \mathbf{F} d\mathbf{s}.$$

Parameterize ∂S as:

$$\mathbf{x}(t) = \begin{pmatrix} 1 \\ \cos t \\ \sin t \end{pmatrix}$$

with $0 < t < 2\pi$.

Notice that \mathbf{x} gives ∂S the orientation induced by the orientation on S. Then,

$$\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = \int_{0}^{2\pi} \mathbf{F}(\mathbf{x})(t) \cdot \mathbf{x}'(t) dt.$$

Calculations show that this equals

$$\int_0^{2\pi} -\cos t \sin^2 t + \sin t \cos t \, dt = \int_0^{2\pi} -\cos t \sin^2 t \, dt + \int_0^{2\pi} \sin t \cos t \, dt$$

= 0.

(11) Let $S \subset \mathbb{R}^3$ be an ellipsoid enclosing the origin, oriented outward. Let $P \subset \mathbb{R}^3$ be a cube enclosing the origin and enclosed by S. Orient P outward. Let \mathbf{F} be an incompressible vector field defined on $\mathbb{R}^3 - \{\mathbf{0}\}$. Prove that the flux of \mathbf{F} through P is the same as the flux of \mathbf{F} through S.

Solution: Let V be the region between S and P. Orient ∂V with a unit normal that points out of V. Then by the divergence theorem:

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} - \iint_{P} \mathbf{F} \cdot d\mathbf{S} = \iiint_{\partial V} \mathbf{F} \cdot d\mathbf{S}$$

$$= \iiint_{V} \operatorname{div} \mathbf{F} dV$$

$$= \iiint_{V} 0 dV$$

$$= 0.$$

Consequently, $\iint_{S} \mathbf{F} \cdot d\mathbf{S}$ equals $\iint_{P} \mathbf{F} \cdot d\mathbf{S}$.

(12) Let $\mathbf{F} \colon \mathbb{R}^3 \to \mathbb{R}^3$. Let \mathbf{a} be a point in \mathbb{R}^3 . For each $n \in \mathbb{N}$, let V_n be a compact 3-dimensional region containing \mathbf{a} , such that the regions V_n limit to \mathbf{a} . Oriente the boundary of V_n outwards. Use the divergence theorem to prove that

$$\operatorname{div} \mathbf{F}(\mathbf{a}) = \lim_{n \to \infty} \frac{1}{\operatorname{vol} V_n} \iint_{\partial V_n} \mathbf{F} \cdot d\mathbf{S}.$$

Solution: Suppose that *n* is large enough so that $\mathbf{F}(\mathbf{x}) \approx \mathbf{F}(\mathbf{a})$ for all $\mathbf{x} \in V_n$. Then, by the divergence theorem:

$$\iint_{\partial V_n} \mathbf{F} \cdot d\mathbf{S} = \iiint_{V_n} \operatorname{div} \mathbf{F} dV
\approx \iiint_{V_n} \operatorname{div} \mathbf{F}(\mathbf{a}) dV
= \operatorname{div} \mathbf{F}(\mathbf{a}) \iiint_{V_n} dV
= \operatorname{div} \mathbf{F}(\mathbf{a}) (\operatorname{vol} V_n).$$

That is,

$$\operatorname{div} \mathbf{F}(\mathbf{a}) \approx \frac{1}{\operatorname{vol} V_n} \iint_{\partial V_n} \mathbf{F} \cdot d\mathbf{S}.$$

As $n \to \infty$ this approximation becomes exact, proving the result.

(Note: This proof is actually non-rigorous. To make it rigorous we would need to use the mean value theorem for integrals.)

(13) Let S be the box with corners $(\pm 1, \pm 1, \pm 1)$, oriented outward. Let

$$\mathbf{F}(x, y, z) = \begin{pmatrix} xyz \\ xy \\ z \end{pmatrix}$$
. Find the flux of **F** through *S*.

Solution: Use the divergence theorem. We have $\operatorname{div} \vec{F}(x, y, z) = yz + x + 1$. The divergence says the flux through *S* is equal to

$$\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} yz + x + 1 \, dx \, dy \, dz = 8.$$

(14) Let S be a surface formed by rotating the image of $\binom{x}{y} = \binom{t}{\sin t}$, $2\pi \le t \le 3\pi$ around the y-axis. Orient S so that at the point $(2\pi + \pi/2, 1, 0)$ there is an upward pointing normal vector. For the following vector fields, find the flux of the vector field through S. (Hint: there are easy ways and there are hard ways...)

For all of the solutions below, let A be the annulus in the xz-plane with the same boundary as S and oriented upward. Let V be the region between A and S.

(a)
$$\mathbf{F}(x, y, z) = \begin{pmatrix} x + y \\ -y + z \\ -x + y \end{pmatrix}$$

Solution:

We have by the divergence theorem, that

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} - \iint_{A} \mathbf{F} \cdot d\mathbf{S} = \iiint_{V} \operatorname{div} \mathbf{F} dV.$$

The divergence of **F** is 0, so $\iint_S \mathbf{F} \cdot d\mathbf{S} = \iint_A \mathbf{F} \cdot d\mathbf{S}$.

Parameterize *A* as:

$$\mathbf{X}(s,t) = \begin{pmatrix} t\cos s \\ 0 \\ t\sin s \end{pmatrix}$$

for $2\pi \le t \le 3\pi$ and $0 \le s \le 2\pi$. Calculate:

$$\mathbf{N} = \begin{pmatrix} 0 \\ t \\ 0 \end{pmatrix}$$

Notice that this gives *A* the correct orientation.

Now, $\mathbf{F} \cdot \mathbf{N}(s,t) = t^2 \sin s$. Thus, the flux through *A* is

$$\int_0^{2\pi} \int_{2\pi}^{3\pi} t^2 \sin s \, dt \, ds = 0.$$

(b)
$$\mathbf{F}(x, y, z) = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Solution: For this problem you can either use Stokes' theorem or the method of the previous part. In this case

$$\iint_A \mathbf{F} \cdot d\mathbf{S} = \iint_A \mathbf{F} \cdot \mathbf{n} \, dS = \iint_A dS = 5\pi^3.$$

(c)
$$\mathbf{F}(x, y, z) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Solution: Once again the flux through S equals the flux through A, and so since \mathbf{F} is tangent to A, the flux through A is zero.

(d)
$$\mathbf{F}(x, y, z) = \frac{1}{x^2 + z^2} \begin{pmatrix} -z \\ 0 \\ x \end{pmatrix}$$

Solution: In this case, recall that the flow lines for \mathbf{F} are circles centered at the origin parallel to the xz-plane. Consequently, \mathbf{F} is tangent to S and so the flux through S is zero.

(15) Prove that inside a hollow planet there is no gravity. (You may use Gauss' Law of Gravitation.)

Solution: See class notes. A solution will be posted here later.