Name: \qquad

The final exam is cumulative. The following problems concern only material since Exam 2. You should also use previous exams, practice exams, quizzes, and homework to study.
(1) Find a parameterization of the surface formed by the graph of $z=$ $x^{2}-y^{2}$ with (x, y) in the triangle in the $x y$-plane formed by the x axis, the y-axis, and the line $y=-x+1$.

Solution: How about:

$$
\mathbf{X}(s, t)=\left(\begin{array}{c}
s \\
t \\
s^{2}-t^{2}
\end{array}\right)
$$

with $0 \leq s \leq 1$ and $0 \leq t \leq-s+1$?
(2) Is the surface in the previous problem a smooth surface? If no, at what points is it not smooth?
Solution: The answer depends (somewhat) on your parameterization. The answer here is based on the parameterization above.

You can calculate that

$$
\begin{aligned}
\mathbf{T}_{s} & =(1,0,2 s) \\
\mathbf{T}_{t} & =(0,1,-2 t) \\
\mathbf{N} & =(-2 s, 2 t, 1)
\end{aligned}
$$

Since \mathbf{N} is never $\mathbf{0}$, and since \mathbf{X} is obviously $\mathrm{C}^{1}, \mathbf{X}$ is a smooth surface.
(3) Find a parameterization of the surface formed by rotating the curve $\binom{\cos t+5}{2 \sin t}$ with $0 \leq t \leq 2 \pi$ around the y-axis.
Solution: How about

$$
\mathbf{X}(s, t)=\left(\begin{array}{c}
\cos s(\cos t+5) \\
2 \sin t \\
\sin s(\cos t+5)
\end{array}\right) ?
$$

(4) Consider the surface

$$
\mathbf{X}(s, t)=\left(\begin{array}{c}
2 \sin 3 t+t \\
\cos 2 s \\
t^{2}+s^{2}
\end{array}\right), \quad 0 \leq t \leq \pi / 4, \quad 0 \leq s \leq \pi
$$

Find the tangent and normal vectors to \mathbf{X} at the point $(\pi / 6, \pi / 6)$. Is the surface smooth?

Solution:

We have

$$
\begin{aligned}
& \mathbf{T}_{s}=(0,-2 \sin 2 s, 2 s) \\
& \mathbf{T}_{t}=(6 \cos (3 t)+1,0,2 t) \\
& \mathbf{N}=(-4 t \sin 2 s, 2 s(6 \cos 3 t+1), 2 \sin 2 s(6 \cos 3 t+1)
\end{aligned}
$$

$\operatorname{Plug}(\pi / 6, \pi / 6)$ into the above equations to get:

$$
\begin{aligned}
\mathbf{T}_{s} & =(0,-\sqrt{3}, \pi / 3) \\
\mathbf{T}_{t} & =(1,0, \pi / 3) \\
\mathbf{N} & =(-\pi \sqrt{3} / 3, \pi / 3, \sqrt{3})
\end{aligned}
$$

Since $\mathbf{N}(\pi / 6, \pi / 6) \neq \mathbf{0}$, the surface is smooth at that point.
(5) Suppose that $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a C^{1} vector field, and that $\mathbf{X}: D \rightarrow \mathbb{R}^{3}$ is a smooth, oriented surface. Let $h: E \rightarrow D$ be a smooth, orientation reversing change-of coordinate function. Prove that

$$
\iint_{\mathbf{X}} \mathbf{F} \cdot d \mathbf{S}=-\iint_{\mathbf{X} \circ h} \mathbf{F} \cdot d \mathbf{S} .
$$

Solution: See your course notes or adapt the solution to the next problem.
(6) Suppose that $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a C^{1} vector field, and that $\mathbf{X}: D \rightarrow \mathbb{R}^{3}$ is a smooth, oriented surface. Let $h: E \rightarrow D$ be a smooth change-of coordinate function. Prove that

$$
\iint_{\mathbf{X}} f d S=\iint_{\mathbf{X} \circ h} f d S .
$$

Solution: By definition,

$$
\iint_{\mathbf{X} \circ h} f d S=\iint_{E} f(\mathbf{X} \circ h)\|\mathbf{N}\| d A
$$

Let $\mathbf{Y}=\mathbf{X} \circ h$. It is a fact (proved in class) that $\mathbf{N}_{\mathbf{Y}}=(\operatorname{det} D h) \mathbf{N}_{\mathbf{X}} \circ h$. Thus,

$$
\iint_{\mathbf{X} \circ h} f d S=\iint_{E} f(\mathbf{X} \circ h)\left\|\mathbf{N}_{\mathbf{X}} \circ h\right\||\operatorname{det} D h| d A
$$

By the change of coordinates theorem, this give us:

$$
\iint_{\mathbf{X} \circ h} f d S=\iint_{E} f(\mathbf{X})\left\|\mathbf{N}_{\mathbf{X}}\right\| d A
$$

By the definition of surface integral we then get our result:

$$
\iint_{\mathbf{X} \circ h} f d S=\iint_{\mathbf{X}} f d S .
$$

(7) Suppose that $\mathbf{X}: D \rightarrow \mathbb{R}^{3}$ is a smooth, oriented surface with unit normal \mathbf{n}. Suppose that $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a C^{1} vector field. Prove that

$$
\iint_{\mathbf{X}} \mathbf{F} \cdot d \mathbf{S}=\iint_{\mathbf{X}} \mathbf{F} \cdot \mathbf{n} d S
$$

Solution: We have $\mathbf{n}=\mathbf{N} /\|\mathbf{N}\|$. Thus,

$$
\begin{aligned}
\iint_{\mathbf{X}} \mathbf{F} \cdot d \mathbf{S} & =\iint_{D}(\mathbf{F} \circ \mathbf{X}) \cdot \mathbf{N} d A \\
& =\iint_{D}(\mathbf{F} \circ \mathbf{X}) \cdot(\|\mathbf{N}\| \mathbf{n}) d A \\
& =\iint_{D}(\mathbf{F} \circ \mathbf{X}) \cdot \mathbf{n}\|\mathbf{N}\| d A \\
& =\iint_{\mathbf{X}} \mathbf{F} \cdot \mathbf{n} d S .
\end{aligned}
$$

(8) Use the previous result to integrate the vector field $\mathbf{F}(x, y, z)=(x, y, z)$ over the unit sphere (with outward normal) in \mathbb{R}^{3}.

Solution: At a point (x, y, z) on the unit sphere S, there is the normal $\mathbf{n}=(x, y, z)$. Thus, $\mathbf{F} \cdot \mathbf{n}=x^{2}+y^{2}+z^{2}$. Since (x, y, z) is on the unit sphere, $\mathbf{F} \cdot \mathbf{n}=1$. Thus,

$$
\iint_{S} \mathbf{F} d S=\iint_{S} \mathbf{F} \cdot \mathbf{n} d S=\iint_{S} 1 d S
$$

This last quantity is just the surface area of the sphere, which is 4π.
(9) Let S be the disc of radius 1 centered at $(1,0,0)$ in \mathbb{R}^{3} which is parallel to the $y z$-plane. Orient S with normal vector pointing in the direction of the postive x-axis. Use the definition of surface integral to calculate the flux of $\mathbf{F}(x, y, z)=(-x y, y z, x z)$ through S.

Solution: Parameterize S as:

$$
\mathbf{X}(s, t)=\left(\begin{array}{l}
1 \\
s \\
t
\end{array}\right)
$$

with (s, t) in the region D defined by $0 \leq s^{2}+t^{2} \leq 1$. It is easy to calculate $\mathbf{N}=(1,0,0)$. Then,

$$
\mathbf{F} \cdot \mathbf{N}(x, y, z)=-x y .
$$

Thus, by the definition of surface integral, the flux of \mathbf{F} through S is

$$
\iint_{D} \mathbf{F} \cdot \mathbf{N}(\mathbf{X}(s, t)) d A=\iint_{D}-s d s d t .
$$

Change to polar coordinates by setting $s=r \cos \theta$ and $t=r \sin \theta$. Then the integral above is equal to (by the change of coordinates theorem):

$$
\int_{0}^{1} \int_{0}^{2 \pi}-r^{2} \cos \theta d \theta d r
$$

Since $\int_{0}^{2 \pi} \cos \theta d \theta=0$, the flux equals 0 .
(10) Use the same surface S and \mathbf{F} as in the previous problem, but now use Stoke's theorem to calculate the flux of the curl of the previous problem.

Solution: By Stoke's theorem,

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\int_{\partial S} \mathbf{F} d \mathbf{s}
$$

Parameterize ∂S as:

$$
\mathbf{x}(t)=\left(\begin{array}{c}
1 \\
\cos t \\
\sin t
\end{array}\right)
$$

with $0 \leq t \leq 2 \pi$.
Notice that \mathbf{x} gives ∂S the orientation induced by the orientation on S. Then,

$$
\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}=\int_{0}^{2 \pi} \mathbf{F}(\mathbf{x})(t) \cdot \mathbf{x}^{\prime}(t) d t
$$

Calculations show that this equals

$$
\begin{aligned}
\int_{0}^{2 \pi}-\cos t \sin ^{2} t+\sin t \cos t d t & =\int_{0}^{2 \pi}-\cos t \sin ^{2} t d t+\int_{0}^{2 \pi} \sin t \cos t d t \\
& =0
\end{aligned}
$$

(11) Let $S \subset \mathbb{R}^{3}$ be an ellipsoid enclosing the origin, oriented outward. Let $P \subset \mathbb{R}^{3}$ be a cube enclosing the origin and enclosed by S. Orient P outward. Let \mathbf{F} be an incompressible vector field defined on $\mathbb{R}^{3}-$ $\{\mathbf{0}\}$. Prove that the flux of \mathbf{F} through P is the same as the flux of \mathbf{F} through S.

Solution: Let V be the region between S and P. Orient ∂V with a unit normal that points out of V. Then by the divergence theorem:

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot d \mathbf{S}-\iint_{P} \mathbf{F} \cdot d \mathbf{S} & =\iint_{\partial V} \mathbf{F} \cdot d \mathbf{S} \\
& =\iiint_{V} \operatorname{div} \mathbf{F} d V \\
& =\iiint_{V} 0 d V \\
& =0
\end{aligned}
$$

Consequently, $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ equals $\iint_{P} \mathbf{F} \cdot d \mathbf{S}$.
(12) Let $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$. Let a be a point in \mathbb{R}^{3}. For each $n \in \mathbb{N}$, let V_{n} be a compact 3-dimensional region containing a, such that the regions V_{n} limit to a. Oriente the boundary of V_{n} outwards. Use the divergence theorem to prove that

$$
\operatorname{div} \mathbf{F}(\mathbf{a})=\lim _{n \rightarrow \infty} \frac{1}{\operatorname{vol} V_{n}} \iint_{\partial V_{n}} \mathbf{F} \cdot d \mathbf{S} .
$$

Solution: Suppose that n is large enough so that $\mathbf{F}(\mathbf{x}) \approx \mathbf{F}(\mathbf{a})$ for all $\mathbf{x} \in V_{n}$. Then, by the divergence theorem:

$$
\begin{aligned}
\iint_{\partial V_{n}} \mathbf{F} \cdot d \mathbf{S} & =\iiint_{V_{n}} \operatorname{div} \mathbf{F} d V \\
& \approx \iiint_{V_{n}} \operatorname{div} \mathbf{F}(\mathbf{a}) d V \\
& =\operatorname{div} \mathbf{F}(\mathbf{a}) \iiint_{V_{n}} d V \\
& =\operatorname{div} \mathbf{F}(\mathbf{a})\left(\operatorname{vol} V_{n}\right) .
\end{aligned}
$$

That is,

$$
\operatorname{div} \mathbf{F}(\mathbf{a}) \approx \frac{1}{\operatorname{vol} V_{n}} \iint_{\partial V_{n}} \mathbf{F} \cdot d \mathbf{S} .
$$

As $n \rightarrow \infty$ this approximation becomes exact, proving the result.
(Note: This proof is actually non-rigorous. To make it rigorous we would need to use the mean value theorem for integrals.)
(13) Let S be the box with corners $(\pm 1, \pm 1, \pm 1)$, oriented outward. Let $\mathbf{F}(x, y, z)=\left(\begin{array}{c}x y z \\ x y \\ z\end{array}\right)$. Find the flux of \mathbf{F} through S.
Solution: Use the divergence theorem. We have $\operatorname{div} \vec{F}(x, y, z)=$ $y z+x+1$. The divergence says the flux through S is equal to

$$
\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} y z+x+1 d x d y d z=8
$$

(14) Let S be a surface formed by rotating the image of $\binom{x}{y}=\binom{t}{\sin t}$, $2 \pi \leq t \leq 3 \pi$ around the y-axis. Orient S so that at the point $(2 \pi+$ $\pi / 2,1,0)$ there is an upward pointing normal vector. For the following vector fields, find the flux of the vector field through S. (Hint: there are easy ways and there are hard ways...)
For all of the solutions below, let A be the annulus in the $x z$-plane with the same boundary as S and oriented upward. Let V be the region between A and S.
(a) $\mathbf{F}(x, y, z)=\left(\begin{array}{c}x+y \\ -y+z \\ -x+y\end{array}\right)$

Solution:

We have by the divergence theorem, that

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}-\iint_{A} \mathbf{F} \cdot d \mathbf{S}=\iiint_{V} \operatorname{div} \mathbf{F} d V
$$

The divergence of \mathbf{F} is 0 , so $\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{A} \mathbf{F} \cdot d \mathbf{S}$.
Parameterize A as:

$$
\mathbf{X}(s, t)=\left(\begin{array}{c}
t \cos s \\
0 \\
t \sin s
\end{array}\right)
$$

for $2 \pi \leq t \leq 3 \pi$ and $0 \leq s \leq 2 \pi$. Calculate:

$$
\mathbf{N}=\left(\begin{array}{l}
0 \\
t \\
0
\end{array}\right)
$$

Notice that this gives A the correct orientation.
Now, $\mathbf{F} \cdot \mathbf{N}(s, t)=t^{2} \sin s$. Thus, the flux through A is

$$
\int_{0}^{2 \pi} \int_{2 \pi}^{3 \pi} t^{2} \sin s d t d s=0
$$

(b) $\mathbf{F}(x, y, z)=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$

Solution: For this problem you can either use Stokes' theorem or the method of the previous part. In this case

$$
\iint_{A} \mathbf{F} \cdot d \mathbf{S}=\iint_{A} \mathbf{F} \cdot \mathbf{n} d S=\iint_{A} d S=5 \pi^{3} .
$$

(c) $\mathbf{F}(x, y, z)=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$

Solution: Once again the flux through S equals the flux through A, and so since \mathbf{F} is tangent to A, the flux through A is zero.
(d) $\mathbf{F}(x, y, z)=\frac{1}{x^{2}+z^{2}}\left(\begin{array}{c}-z \\ 0 \\ x\end{array}\right)$

Solution: In this case, recall that the flow lines for \mathbf{F} are circles centered at the origin parallel to the $x z$-plane. Consequently, \mathbf{F} is tangent to S and so the flux through S is zero.
(15) Prove that inside a hollow planet there is no gravity. (You may use Gauss' Law of Gravitation.)

Solution: See class notes. A solution will be posted here later.

