\qquad

The final exam is cumulative. The following problems concern only material since Exam 2. You should also use previous exams, practice exams, quizzes, and homework to study.
(1) Find a parameterization of the surface formed by the graph of $z=$ $x^{2}-y^{2}$ with (x, y) in the triangle in the $x y$-plane formed by the x axis, the y-axis, and the line $y=-x+1$.
(2) Is the surface in the previous problem a smooth surface? If no, at what points is it not smooth?
(3) Find a parameterization of the surface formed by rotating the curve $\binom{\cos t+5}{2 \sin t}$ with $0 \leq t \leq 2 \pi$ around the y-axis.
(4) Consider the surface

$$
\mathbf{X}(s, t)=\left(\begin{array}{c}
2 \sin 3 t+t \\
\cos 2 s \\
t^{2}+s^{2}
\end{array}\right), \quad 0 \leq t \leq \pi / 4, \quad 0 \leq s \leq \pi
$$

Find the tangent and normal vectors to \mathbf{X} at the point $(\pi / 6, \pi / 6)$. Is the surface smooth?
(5) Suppose that $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a C^{1} vector field, and that $\mathbf{X}: D \rightarrow \mathbb{R}^{3}$ is a smooth, oriented surface. Let $h: E \rightarrow D$ be a smooth, orientation reversing change-of coordinate function. Prove that

$$
\iint_{\mathbf{X}} \mathbf{F} \cdot d \mathbf{S}=-\iint_{\mathbf{X} \circ h} \mathbf{F} \cdot d \mathbf{S} .
$$

(6) Suppose that $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a C^{1} vector field, and that $\mathbf{X}: D \rightarrow \mathbb{R}^{3}$ is a smooth, oriented surface. Let $h: E \rightarrow D$ be a smooth change-of coordinate function. Prove that

$$
\iint_{\mathbf{X}} f d S=\iint_{\mathbf{X} \circ h} f d S .
$$

(7) Suppose that $\mathbf{X}: D \rightarrow \mathbb{R}^{3}$ is a smooth, oriented surface with unit normal \mathbf{n}. Suppose that $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a C^{1} vector field. Prove that

$$
\iint_{\mathbf{X}} \mathbf{F} \cdot d \mathbf{S}=\iint_{\mathbf{X}} \mathbf{F} \cdot \mathbf{n} d S
$$

(8) Use the previous result to integrate the vector field $\mathbf{F}(x, y, z)=(x, y, z)$ over the unit sphere (with outward normal) in \mathbb{R}^{3}.
(9) Let S be the disc of radius 1 centered at $(1,0,0)$ in \mathbb{R}^{3} which is parallel to the $y z$-plane. Orient S with normal vector pointing in the direction of the postive x-axis. Use the definition of surface integral to calculate the flux of $\mathbf{F}(x, y, z)=(-x y, y z, x z)$ through S.
(10) Use the same surface S and \mathbf{F} as in the previous problem, but now use Stoke's theorem to calculate the flux of the curl of the previous problem.
(11) Let $S \subset \mathbb{R}^{3}$ be an ellipsoid enclosing the origin, oriented outward. Let $P \subset \mathbb{R}^{3}$ be a cube enclosing the origin and enclosed by S. Orient P outward. Let \mathbf{F} be an incompressible vector field defined on $\mathbb{R}^{3}-$ $\{\mathbf{0}\}$. Prove that the flux of \mathbf{F} through P is the same as the flux of \mathbf{F} through S.
(12) Let $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$. Let a be a point in \mathbb{R}^{3}. For each $n \in \mathbb{N}$, let V_{n} be a compact 3-dimensional region containing a, such that the regions V_{n} limit to a. Oriente the boundary of V_{n} outwards. Use the divergence theorem to prove that

$$
\operatorname{div} \mathbf{F}(\mathbf{a})=\lim _{n \rightarrow \infty} \frac{1}{\operatorname{vol} V_{n}} \iint_{\partial V_{n}} \mathbf{F} \cdot d \mathbf{S} .
$$

(13) Let S be the box with corners $(\pm 1, \pm 1, \pm 1)$, oriented outward. Let $\mathbf{F}(x, y, z)=\left(\begin{array}{c}x y z \\ x y \\ z\end{array}\right)$. Find the flux of \mathbf{F} through S.
(14) Let S be a surface formed by rotating the image of $\binom{x}{y}=\binom{t}{\sin t}$, $2 \pi \leq t \leq 3 \pi$ around the y-axis. Orient S so that at the point $(2 \pi+$ $\pi / 2,1,0)$ there is an upward pointing normal vector. For the following vector fields, find the flux of the vector field through S. (Hint: there are easy ways and there are hard ways...)

(a) $\mathbf{F}(x, y, z)=\left(\begin{array}{c}x+y \\ -y+z \\ -x+y\end{array}\right)$
(b) $\mathbf{F}(x, y, z)=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$
(c) $\mathbf{F}(x, y, z)=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$
(d) $\mathbf{F}(x, y, z)=\frac{1}{x^{2}+z^{2}}\left(\begin{array}{c}-z \\ 0 \\ x\end{array}\right)$
(15) Prove that inside a hollow planet there is no gravity. (You may use Gauss' Law of Gravitation.)
(16) Give a complete, precise statement of both Stokes' theorem and the divergence theorem.

