(1) Give an example of a vector field \mathbf{F} having $\operatorname{curl} \mathbf{F}=\mathbf{0}$, but where \mathbf{F} is not a gradient field.
(2) Know the formal definitions of the following terms or the complete precise statements of the following theorems:
(a) Green's theorem
(b) planar divergence theorem
(c) conservative vector field
(d) gradient field
(e) potential function
(f) parameterized surface
(g) orientable surface
(h) one-sided surface
(3) Give an example of a one-sided surface in \mathbb{R}^{3}.
(4) Give an example of an orientable surface in \mathbb{R}^{3}.
(5) Prove the following:
(a) Suppose that $D \subset \mathbb{R}^{2}$ is a type III region and that $\mathbf{F}: D \rightarrow \mathbb{R}^{2}$ satisfies the hypotheses of Green's theorem. Prove that the conclusion of Green's theorem holds.
(b) Suppose that $D \subset \mathbb{R}^{2}$ is the union of two type III regions along a portion of their boundaries. Suppose also that $\mathbf{F}: D \rightarrow \mathbb{R}^{2}$ satisfies the hypotheses of Green's theorem. Prove that the conclusion of Green's theorem holds.
(c) Suppose that $D \subset \mathbb{R}^{2}$ is simply connected and that $\mathbf{F}: D \rightarrow \mathbb{R}^{2}$ has $\operatorname{curl} \mathbf{F}=\mathbf{0}$. Prove that \mathbf{F} has path independent line integrals in D.
(d) Suppose that $\mathbf{F}: D \rightarrow \mathbb{R}^{n}$ has path independent line integrals. Describe the creation of a potential function for \mathbf{F} and prove that the gradient of this function is \mathbf{F}.
(e) Prove that if $\mathbf{F}: D \rightarrow \mathbb{R}^{n}$ is a gradient field and if C is a simple closed curve in D, then $\int_{C} \mathbf{F} \cdot d \mathbf{s}=0$.
(6) Let $D \subset \mathbb{R}^{2}$ be the region bounded by the graphs of the equations $y=x^{3}$ and $y=x$ and with $x \geq 0$. Suppose that $\mathbf{F}(x, y)=\left(x y+y, y^{2} x\right)$.
(a) Is D a type I, II, or III region or none of the above?

Solution: It is a type III region, since it can be expressed as both

$$
\begin{aligned}
& \left\{(x, y): 0 \leq x \leq 1, x^{3} \leq y \leq x\right\} \quad \text { and } \\
& \{(x, y): 0 \leq y \leq 1, y \leq x \leq \sqrt[3]{y}\}
\end{aligned}
$$

(b) Orient ∂D so that D is always on the left. Calculate $\int_{\partial D} \mathbf{F} \cdot d \mathbf{s}$ directly.

Solution: Parameterize the graph of $y=x$ as $(1-t, 1-t)$ and the graph of $y=x^{3}$ as $\left(t, t^{3}\right)$ both with $0 \leq t \leq 1$. Notice that this gives ∂D_{1} the "correct" orientation for Green's theorem.. Let C_{1} and C_{2} be the pieces of ∂D_{1} corresponding to $y=x^{3}$ and $y=x$ respectively. Then:

$$
\begin{aligned}
\int_{\partial D} \mathbf{F} \cdot d \mathbf{s} & = \\
\int_{0}^{1}\binom{(1-t)^{2}+(1-t)}{(1-t)^{3}} \cdot\binom{-1}{-1}+\binom{t^{4}+t^{3}}{t^{7}} \cdot\binom{1}{3 t^{2}} d t & = \\
\int_{0}^{1}-(1-t)^{2}-(1-t)-(1-t)^{3}+\left(t^{4}+t^{3}\right)+3 t^{9} d t & = \\
(1-t)^{3} / 3+(1-t)^{2} / 2+(1-t)^{4} / 4+t^{5} / 5+t^{4} / 4+3 t^{10} /\left.10\right|_{0} ^{1} & = \\
1 / 5+1 / 4+3 / 10-1 / 3-1 / 2-1 / 4 & = \\
-1 / 3 &
\end{aligned}
$$

(c) Calculate $\iint_{D} \operatorname{curl} \mathbf{F} \cdot \mathbf{k} d A$ directly.

Solution:

$$
\begin{aligned}
& \int_{0}^{1} \int_{x^{3}}^{x} \operatorname{curl\mathbf {F}\cdot \mathbf {k}dA}= \\
& \int_{0}^{1} \int_{x^{3}}^{x} y^{2}-x-1 d y d x= \\
& \int_{0}^{1} x^{3} / 3-x^{2}-x-x^{9} / 3+x^{4}+x^{3} d x= \\
& 1 / 12-1 / 3-1 / 2-1 / 30+1 / 5+1 / 4= \\
&-1 / 3
\end{aligned}
$$

(d) What is the relevance of Green's theorem to the preceding problems?

Solution: Since \mathbf{F} is defined on D and since ∂D is piecewise C^{1}, Green's theorem asserts the previous two calculations should be equal. Which they are.
(e) Is the vector field \mathbf{F} conservative?

Solution: No. If it were conservative the integral $\int_{\partial D} \mathbf{F} \cdot d \mathbf{s}$ would be 0 . (There are other possible reasons.)
(7) Let $\mathbf{F}(x, y, z)=\frac{-1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$. Suppose that a particle is located at the point $(1,1,0)$ and moves via the path $\mathbf{x}(t)=(t, \cos t, t \sin t)$ to the point $(\pi / 2,0, \pi / 2)$. How much work is done?

Solution: The vector field \mathbf{F} has potential function:

$$
f(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}
$$

Let $\mathbf{a}=(1,1,0)$ and $\mathbf{b}=(\pi / 2,0, \pi / 2)$. By the FTC, the work done (which is $\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}$) is

$$
f(\mathbf{b})-f(\mathbf{a})=\frac{\sqrt{2}}{\pi}-\frac{1}{\sqrt{2}} .
$$

(8) What is the flux of the vector field $\mathbf{F}(x, y)=\left(-y^{2} x, x^{2} y\right)$ across the circle of radius 2 centered at the origin? Just set up an appropriate single-variable integral. You do not need to solve it.
Solution: Let $\mathbf{x}(t)=(2 \cos t, 2 \sin t)$ for $0 \leq t \leq 2 \pi$. The unit normal pointing outside the region bounded by the circle is $\mathbf{n}(t)=$ $(\cos t, \sin (t))$. Consequently, the flux is

$$
\int_{\mathbf{x}} \mathbf{F} \cdot \mathbf{n} d s=\int_{0}^{2 \pi}\binom{-8 \sin ^{2} t \cos t}{8 \cos ^{2} t \sin t} \cdot\binom{\cos t}{\sin t}(2) d t
$$

This is equal to:

$$
2 \int_{0}^{2 \pi}-8 \cos ^{2} t \sin ^{2} t+8 \sin ^{2} t \cos ^{2} t d t=0
$$

(9) What is the circulation of the vector field $\mathbf{F}(x, y)=\left(-y^{2} x, x^{2} y\right)$ around the circle of radius 2 centered at the origin? Just set up an appropriate single-variable integral. You do not need to solve it.

Solution: We use the same notation as in the previous problem. The circulation of the vector field is:

$$
\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}=\int_{0}^{2 \pi}\binom{-8 \cos ^{2} t \sin t}{\sin ^{2} t \cos t} \cdot\binom{-2 \sin t}{2 \cos t} d t
$$

This is equal to:

$$
\int_{0}^{2 \pi} 32 \cos ^{2} t \sin ^{2} t d t
$$

(10) A wire C is bent into the shape of a circle of radius 1 centered at the origin in \mathbb{R}^{2}. It is given a charge of +1 and so generates an electric field \mathbf{F}. How much work is done in moving a charged particle from $(1 / 2,0)$ to $(0,0)$? Does it matter what path is taken? Why not? (You may leave your answer in integral form.)

Solution: Let q be the charge of the particle. Let C be the wire. By the principle of superposition, we can obtain a potential function for F by calculation:

$$
f(a, b)=\int_{C} \frac{-q}{\sqrt{(x-a)^{2}+(y-b)^{2}}} d s
$$

since $\frac{-q}{\sqrt{a^{2}+b^{2}}}$ is a potential function for the electric field generated by a single particle at the origin. Choosing the usual parameterization for C and letting $b=0$, we obtain:

$$
f(a, 0)=-q \int_{0}^{2 \pi} \frac{1}{\sqrt{1-2 a \cos t+a^{2}}} d t
$$

Since we have a potential function we can simply evaluate f on the endpoints of the path (the path not mattering the slightest) and subtract in order to find the work. So for (a) we obtain:

$$
f(1 / 2,0)-f(0,0)=-q\left(\int_{0}^{2 \pi} \frac{1}{\sqrt{1-\cos t+1 / 4}} d t-2 \pi\right)
$$

(11) Explain why $\operatorname{curl} \mathbf{F}(\mathbf{a}) \cdot \mathbf{k}=\lim _{r \rightarrow 0^{+}} \frac{1}{r^{2}} \int_{S_{r}} \mathbf{F} \cdot d \mathbf{s}$ where S_{r} is a square centered at a with the distance between midpoints of opposite sides equal to $r . \mathbf{F}$ is a planar vector field.
Solution: By Green's theorem,

$$
\int_{S_{r}} \mathbf{F} \cdot d \mathbf{s}=\iint_{D_{r}} \operatorname{curl} \mathbf{F} \cdot \mathbf{k} d A
$$

For small enough $r, \mathbf{F}(\mathbf{x}) \cdot \mathbf{k} \approx \mathbf{F}(\mathbf{a})$ and so the above integral is approximately $r^{2} \operatorname{curl} \mathbf{F}(\mathbf{a}) \cdot \mathbf{k}$. Hence,

$$
\operatorname{curl} \mathbf{F}(\mathbf{a}) \cdot \mathbf{k} \approx \frac{1}{r^{2}} \int_{S_{r}} \mathbf{F} \cdot d \mathbf{s}
$$

The approximation tends to an equality as $r \rightarrow 0^{+}$.
(12) Explain why $\operatorname{div} \mathbf{F}(\mathbf{a})=\lim _{r \rightarrow 0^{+}} \frac{1}{r^{2}} \int_{S_{r}} \mathbf{F} \cdot \mathbf{n} d s$ where S_{r} is a square centered at a with the distance between midpoints of opposite sides equal to $r . \mathbf{F}$ is a planar vector field.
(13) Find a single variable integral representing the area enclosed by the path $\phi(t)=(2 \cos (2 t), 3 \sin (3 t))$ for $-\pi / 3 \leq t \leq \pi / 3$.
Solution: We note that the orientation of the path ϕ has the bounded region D always on the left. Hence by Green's theorem and the fact that $\operatorname{curl}\binom{0}{x}=1$:

$$
\begin{aligned}
\iint_{D} 1 d A & =\int_{-\pi / 3}^{\pi / 3}\binom{0}{2 \cos 2 t} \cdot\binom{-4 \sin 2 t}{9 \cos 3 t} d t \\
& =\int_{-\pi / 3}^{\pi / 3} 18 \cos (2 t) \cos (3 t) d t
\end{aligned}
$$

