
MA 302: Practice Exam 2 Partial Solutions Name:

(1) Give an example of a vector field F having curlF = 0, but where F
is not a gradient field.

(2) Know the formal definitions of the following terms or the complete
precise statements of the following theorems:

(a) Green’s theorem

(b) planar divergence theorem

(c) conservative vector field

(d) gradient field

(e) potential function

(f) parameterized surface

(g) orientable surface

(h) one-sided surface

(3) Give an example of a one-sided surface in R3.

(4) Give an example of an orientable surface in R3.

(5) Prove the following:

(a) Suppose that D ⊂ R2 is a type III region and that F : D→ R2

satisfies the hypotheses of Green’s theorem. Prove that the con-
clusion of Green’s theorem holds.

(b) Suppose that D⊂ R2 is the union of two type III regions along
a portion of their boundaries. Suppose also that F : D→ R2

satisfies the hypotheses of Green’s theorem. Prove that the con-
clusion of Green’s theorem holds.

(c) Suppose that D⊂R2 is simply connected and that F : D→R2

has curlF = 0. Prove that F has path independent line integrals
in D.

(d) Suppose that F : D→ Rn has path independent line integrals.
Describe the creation of a potential function for F and prove
that the gradient of this function is F.
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(e) Prove that if F : D→ Rn is a gradient field and if C is a simple
closed curve in D, then

∫
C F ·ds = 0.

(6) Let D ⊂ R2 be the region bounded by the graphs of the equations
y= x3 and y= x and with x≥ 0. Suppose that F(x,y) = (xy+y,y2x).

(a) Is D a type I, II, or III region or none of the above?

Solution: It is a type III region, since it can be expressed as
both

{(x,y) : 0≤ x≤ 1,x3 ≤ y≤ x} and
{(x,y) : 0≤ y≤ 1,y≤ x≤ 3

√
y}

(b) Orient ∂D so that D is always on the left. Calculate
∫

∂D
F · ds

directly.

Solution: Parameterize the graph of y = x as (1− t,1− t) and
the graph of y = x3 as (t, t3) both with 0 ≤ t ≤ 1. Notice that
this gives ∂D1 the “correct” orientation for Green’s theorem..
Let C1 and C2 be the pieces of ∂D1 corresponding to y = x3 and
y = x respectively. Then: ∫

∂D F ·ds =

∫ 1
0

(
(1− t)2 +(1− t)

(1− t)3

)
·
(
−1
−1

)
+

(
t4 + t3

t7

)
·
(

1
3t2

)
dt =

∫ 1
0 −(1− t)2− (1− t)− (1− t)3 +(t4 + t3)+3t9 dt =

(1− t)3/3+(1− t)2/2+(1− t)4/4+ t5/5+ t4/4+3t10/10
∣∣∣1
0

=

1/5+1/4+3/10−1/3−1/2−1/4 =
−1/3

(c) Calculate
∫∫
D

curlF ·kdA directly.

Solution: ∫ 1
0
∫ x

x3 curlF ·kdA =∫ 1
0
∫ x

x3 y2− x−1dydx =∫ 1
0 x3/3− x2− x− x9/3+ x4 + x3 dx =

1/12−1/3−1/2−1/30+1/5+1/4 =
−1/3
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(d) What is the relevance of Green’s theorem to the preceding prob-
lems?

Solution: Since F is defined on D and since ∂D is piece-
wise C1, Green’s theorem asserts the previous two calculations
should be equal. Which they are.

(e) Is the vector field F conservative?

Solution: No. If it were conservative the integral
∫

∂D F · ds
would be 0. (There are other possible reasons.)

(7) Let F(x,y,z) = −1
(x2+y2+z2)3/2

x
y
z

. Suppose that a particle is located

at the point (1,1,0) and moves via the path x(t) = (t,cos t, t sin t) to
the point (π/2,0,π/2). How much work is done?

Solution: The vector field F has potential function:

f (x,y,z) = (x2 + y2 + z2)−1/2

Let a = (1,1,0) and b = (π/2,0,π/2). By the FTC, the work done
(which is

∫
x F ·ds) is

f (b)− f (a) =
√

2
π
− 1√

2
.

(8) What is the flux of the vector field F(x,y) = (−y2x,x2y) across the
circle of radius 2 centered at the origin? Just set up an appropriate
single-variable integral. You do not need to solve it.

Solution: Let x(t) = (2cos t,2sin t) for 0 ≤ t ≤ 2π . The unit nor-
mal pointing outside the region bounded by the circle is n(t) =
(cos t,sin(t)). Consequently, the flux is∫

x
F ·nds =

∫ 2π

0

(
−8sin2 t cos t
8cos2 t sin t

)
·
(

cos t
sin t

)
(2)dt.

This is equal to:

2
∫ 2π

0
−8cos2 t sin2 t +8sin2 t cos2 t dt = 0.

(9) What is the circulation of the vector field F(x,y)= (−y2x,x2y) around
the circle of radius 2 centered at the origin? Just set up an appropri-
ate single-variable integral. You do not need to solve it.
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Solution: We use the same notation as in the previous problem. The
circulation of the vector field is:∫

x
F ·ds =

∫ 2π

0

(
−8cos2 t sin t

sin2 t cos t

)
·
(
−2sin t
2cos t

)
dt.

This is equal to: ∫ 2π

0
32cos2 t sin2 t dt.

(10) A wire C is bent into the shape of a circle of radius 1 centered at the
origin in R2. It is given a charge of +1 and so generates an electric
field F. How much work is done in moving a charged particle from
(1/2,0) to (0,0)? Does it matter what path is taken? Why not?
(You may leave your answer in integral form.)

Solution: Let q be the charge of the particle. Let C be the wire. By
the principle of superposition, we can obtain a potential function for
F by calculation:

f (a,b) =
∫

C

−q√
(x−a)2 +(y−b)2

ds

since −q√
a2+b2 is a potential function for the electric field generated by

a single particle at the origin. Choosing the usual parameterization
for C and letting b = 0, we obtain:

f (a,0) =−q
∫ 2π

0

1√
1−2acos t +a2

dt.

Since we have a potential function we can simply evaluate f on
the endpoints of the path (the path not mattering the slightest) and
subtract in order to find the work. So for (a) we obtain:

f (1/2,0)− f (0,0) =−q(
∫ 2π

0

1√
1− cos t +1/4

dt−2π)

(11) Explain why curlF(a) ·k = limr→0+
1
r2

∫
Sr

F ·ds where Sr is a square
centered at a with the distance between midpoints of opposite sides
equal to r. F is a planar vector field.

Solution: By Green’s theorem,∫
Sr

F ·ds =
∫∫

Dr

curlF ·kdA.
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For small enough r, F(x) · k ≈ F(a) and so the above integral is
approximately r2 curlF(a) ·k. Hence,

curlF(a) ·k≈ 1
r2

∫
Sr

F ·ds.

The approximation tends to an equality as r→ 0+.

(12) Explain why divF(a) = limr→0+
1
r2

∫
Sr

F ·nds where Sr is a square
centered at a with the distance between midpoints of opposite sides
equal to r. F is a planar vector field.

(13) Find a single variable integral representing the area enclosed by the
path φ(t) = (2cos(2t),3sin(3t)) for −π/3≤ t ≤ π/3.

Solution: We note that the orientation of the path φ has the bounded
region D always on the left. Hence by Green’s theorem and the fact

that curl
(

0
x

)
= 1:

∫∫
D 1dA =

∫ π/3
−π/3

(
0

2cos2t

)
·
(
−4sin2t
9cos3t

)
dt

=
∫ π/3
−π/3 18cos(2t)cos(3t)dt.


