\qquad
(1) Let $F(x, y)=\left(x^{2} y, y^{2} x, 3 x-2 y x\right)$. Find the derivative of F.

Solution:

$$
D F(x, y)=\left(\begin{array}{cc}
2 x y & x^{2} \\
y^{2} & 2 y x \\
3-2 y & -2 x
\end{array}\right)
$$

(2) Let $F(x, y)=(x-y, x+y)$ and let $G(x, y)=(x \cos y, x \sin y)$.

Find the derivative of $F \circ G$ using the chain rule.

Solution:

$$
\begin{aligned}
D F(x, y) & =\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) \\
D G(x, y) & =\left(\begin{array}{cc}
\cos y & -x \sin y \\
\sin y & x \cos y
\end{array}\right) \\
D(F \circ G)(x, y) & =D F(G(x, y)) D G(x, y) \\
& =\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
\cos y & -x \sin y \\
\sin y & x \cos y
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos y-\sin y & -x \sin y-x \cos y \\
\cos y+\sin y & -x \sin y+x \cos y
\end{array}\right)
\end{aligned}
$$

(3) Suppose that a rotating circle of radius 1 is travelling through the plane, so that at time t seconds the center of the circle is at the point $(t, \sin t)$. Let P be the point on the circle which is at $(0,1)$ at time $t=0$. If the circle makes 3 revolutions per second, what is the path $\mathbf{x}(t)$ taken by the point P ?

Solution: The rotation of the P relative to the center of the circle (that is, in $\left.T_{\mathbf{c}(t)}\right)$ can be described by the path $(\cos (6 \pi t+\pi / 2), \sin (6 \pi t+$ $\pi / 2))$. Thus, $\mathbf{x}(t)=(\cos (6 \pi t+\pi / 2)+t, \sin (6 \pi t+\pi / 2)+\sin t)$.
(4) A rotating circle of radius 1 follows a helical path in \mathbb{R}^{3} so that at time t the center of the circle is at $(\sin t, \cos t, t)$. At each time t, the circle lies in the osculating plane. (That is, the circle lies in the plane spanned by the unit tangent and the unit normal vectors.) Let
P be the point on the circle which is at $(1,0)$ at time $t=0$. The circle completes one rotation every 2π seconds. Find a formula $\mathbf{x}(t)$ for the path taken by the point P.

Solution: Relative to the center of the circle (that is, in $T_{\mathbf{c}(t)}$) the point P follows the path $\cos t \mathbf{T}+\sin t \mathbf{N}$ where \mathbf{T} and \mathbf{N} are the unit tangent and unit normal vectors to $\mathbf{c}(t)=(\sin t, \cos t, t)$ respectively. Those formulae are

$$
\begin{aligned}
& \mathbf{T}(t)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
\cos t \\
-\sin t \\
1
\end{array}\right) \\
& \mathbf{N}(t)=\left(\begin{array}{c}
-\sin t \\
-\cos t \\
0
\end{array}\right)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\mathbf{c}(t) & =\cos t \mathbf{T}+\sin t \mathbf{N}+\mathbf{c}(t) \\
& =\frac{\cos t}{\sqrt{2}}\left(\begin{array}{c}
\cos t \\
-\sin t \\
1
\end{array}\right)+\sin t\left(\begin{array}{c}
-\sin t \\
-\cos t \\
0
\end{array}\right)+\left(\begin{array}{c}
\sin t \\
\cos t \\
t
\end{array}\right) .
\end{aligned}
$$

(5) Explain what it means for curvature to be an intrinsic quantity.

Solution: The curvature of a path $\mathbf{x}(t)$ at t_{0}, depends only on the curve itself at t_{0}, not on the parameterization \mathbf{x}.
(6) Prove that the curvature at any point of a circle of radius r is $1 / r$.

Solution: A circle of radius r can be parameterized as $\mathbf{x}(t)=$ ($r \cos t, r \sin t$) for $0 \leq t \leq 2 \pi$. We have:

$$
\begin{aligned}
\mathbf{x}^{\prime}(t) & =(-r \sin t, r \cos t) \\
\left\|\mathbf{x}^{\prime}(t)\right\| & =r \\
\mathbf{T} & =(-\sin t, \cos t) \\
\mathbf{T}^{\prime} & =(-\cos t,-\sin t) \\
\left\|\mathbf{T}^{\prime}\right\| & =1 \\
\kappa(t) & =\left\|\mathbf{T}^{\prime}\right\| /\left\|\mathbf{x}^{\prime}\right\| \\
& =1 / r .
\end{aligned}
$$

(7) A particle is following the path $\mathbf{x}(t)=\left(t, t^{2}, t^{3}\right)$ for $1 \leq t \leq 5$. Find an integral representing the distance travelled by the particle after t seconds.

Solution: The distance travelled after t seconds is

$$
\begin{aligned}
s(t) & =\int_{1}^{t}\left\|\mathbf{x}^{\prime}(\tau)\right\| d \tau \\
& =\int_{1}^{t} \sqrt{1+4 t^{2}+9 t^{4}} d \tau
\end{aligned}
$$

(8) Let $\mathbf{x}(t)=\left(t^{2}, 3 t^{2}\right)$ for $t \geq 1$. Reparameterize \mathbf{x} by arc length.

Solution: We compute,

$$
s(t)=\int_{1}^{t} \sqrt{4 \tau^{2}+36 \tau^{2}} d \tau=\int_{1}^{t} 2 \tau \sqrt{10} d \tau .=\sqrt{10}\left(t^{2}-1\right)
$$

Then,

$$
s^{-1}(t)=\sqrt{t / \sqrt{10}+1}
$$

Consequently,

$$
\mathbf{y}(t)=\mathbf{x} \circ s^{-1}(t)=(t / \sqrt{10}+1,3 t / \sqrt{10}+3)
$$

is the reparameterization of x by arclength.
(9) Suppose that $\mathbf{x}(t)$ is a path in \mathbb{R}^{n} such that $\mathbf{x}(0)=\mathbf{a}$ and $\mathbf{x}(1)=\mathbf{b}$ (that is, x is a path joining a to b.) Find a path which has the same image as \mathbf{x} but which joins b to a.

Solution: $\mathbf{y}:[-1,0] \rightarrow \mathbb{R}^{n}$ defined by $\mathbf{y}(t)=\mathbf{x}(-t)$ will do the trick since $\mathbf{y}(0)=\mathbf{a}$ and $\mathbf{y}(-1)=\mathbf{b}$.
(10) Let $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$ be a path with $\mathbf{x}^{\prime}(t) \neq \mathbf{0}$ for all t. Let $\mathbf{y}=\mathbf{x} \circ \phi$ be an orientation reversing reparameterization of \mathbf{x}. Suppose that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is integrable. Prove that $\int_{\mathbf{y}} f d s=\int_{\mathbf{x}} f d s$.
Solution: Since ϕ is orientation reversing, $\left|\phi^{\prime}(t)\right|=-\phi^{\prime}(t)$. Hence, $\left\|\mathbf{y}^{\prime}(t)\right\|=-\left\|\mathbf{x}^{\prime}(\phi(t))\right\| \phi^{\prime}(t)$. Thus,

$$
\int_{\mathbf{y}} f d s=-\int_{c}^{d} f(\mathbf{x}(\phi(t)))\left\|\mathbf{x}^{\prime}(\phi(t))\right\| \phi^{\prime}(t) d t .
$$

Substitute $u=\phi(t)$ and $d u=\phi^{\prime}(t) d t$ to get:

$$
\int_{\mathbf{y}} f d s=-\int_{b}^{a} f(\mathbf{x}(u))\left\|\mathbf{x}^{\prime}(u)\right\| d u
$$

Reversing the limits of integration eliminates the negative sign and so the result follows.
(11) Let $\mathbf{x}(t)=(t \cos t, t \sin t)$ for $0 \leq t \leq 2 \pi$. Let $f(x, y)=y \cos x$. Let $F(x, y)=(-y, x)$. Find one-variable integrals representing $\int_{\mathbf{x}} f d s$ and $\int_{\mathbf{x}} F \cdot d \mathbf{s}$.

Solution: Notice that

$$
\begin{aligned}
\mathbf{x}(t) & =(t \cos t, t \sin t) \\
\mathbf{x}^{\prime}(t) & =(\cos t-t \sin t, t \cos t+\sin t) \\
\left\|\mathbf{x}^{\prime}(t)\right\| & =\sqrt{(\cos t-t \sin t)^{2}+(t \cos t+\sin t)^{2}}
\end{aligned}
$$

Thus,

$$
\int_{\mathbf{x}} f d s=\int_{0}^{2 \pi} t \sin t \cos (t \cos t) \sqrt{(\cos t-t \sin t)^{2}+(t \cos t+\sin t)^{2}} d t
$$

And,

$$
\begin{aligned}
\int_{\mathbf{x}} F \cdot d s & =\int_{0}^{2 \pi}\binom{-t \sin t}{t \cos t} \cdot\binom{\cos t-t \sin t}{\sin t+t \cos t} d t \\
& =\int_{0}^{2 \pi} t^{2} d t \\
& =8 \pi^{3} / 3
\end{aligned}
$$

(12) The gravitation vector field in \mathbb{R}^{3} is $F(\mathbf{x})=\mathbf{x} /\|\mathbf{x}\|^{3}$. Find an integral representing the amount of work required to move an object through the vector field F along the path $\mathbf{x}(t)=(t \cos t, t \sin t, t)$ for $1 \leq t \leq 2 \pi$.
Solution: Notice that $\mathbf{x}^{\prime}(t)=(\cos t-t \sin t, \sin t+t \cos t, 1)$ and $\left\|\mathbf{x}^{\prime}(t)\right\|=t \sqrt{3}$. Thus, the work required is

$$
\int_{1}^{2 \pi} F(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t) d t=\int_{1}^{2 \pi} \frac{1}{3^{3 / 2} t^{2}}\left(\begin{array}{c}
\cos t \\
\sin t \\
1
\end{array}\right) \cdot\left(\begin{array}{c}
\cos t-t \sin t \\
\sin t+t \cos t \\
1
\end{array}\right) d t
$$

This last integral is equal to $\int_{1}^{2 \pi} \frac{2}{3^{3 / 2} t^{2}} d t$.That is equal to $2 / 3^{3 / 2}-$ $1 /\left(3^{3 / 2} \pi\right)$.
(13) Let $F(x, y)=(a x+b y, c x+d y)$ be a transformation of space, where a, b, c, d are constants such that $a d-b c \neq 0$. Suppose that an object is moving in a circle $\mathbf{x}(t)=(\cos t, \sin t)$. Let $\mathbf{y}(t)=F(\mathbf{x}(t))$. If all forces stop acting on an object following the path \mathbf{y} at time $t=\pi$, where will the object be 3 seconds later?
Solution: We find that $\mathbf{y}(\pi)=F(\mathbf{x}(\pi))=(-a,-c)$. By the chain rule,

$$
\mathbf{y}^{\prime}(t)=D F D \mathbf{x}=(-a \sin t+b \cos t,-c \sin t+d \cos t) .
$$

Thus the object will follow the path

$$
l(t)=t(-b,-d)+(-a,-c)
$$

at time $t+\pi$ seconds. Hence, at time $t=\pi+3$, the particle is at $l(3)=(-3 b-a,-3 d-c)$.
(14) Let $F(x, y)=(-x, y)$
(a) Sketch a portion of the vector field $F(x, y)=(-x, y)$.

(b) Sketch a flow line for the vector field starting at $(1,1)$.

(c) Find a parameterization for the flow line starting at $(1,1)$.

Solution: $\phi(t)=\left(e^{-t}, e^{t}\right)$.
(d) The vector field F is a gradient field. Find the potential function.

Solution: $f(x, y)=-x^{2} / 2+y^{2} / 2$.
(15) Let R be the region in \mathbb{R}^{2} bounded by the lines $x=0, y=x$ and $y=-x+2$. Let $f(x, y)=x^{2}+y^{2}$. Find $\iint_{R} f d A$.
Solution: By Fubini's theorem:

$$
\iint_{R} f d A=\int_{0}^{2} \int_{x}^{-x+2} x^{2}+y^{2} d y d x
$$

(16) Let $f(x, y)=y e^{x}$. Find the gradient of f.

Solution: $\nabla f(x, y)=\left(y e^{x}, e^{x}\right)$.
(17) Let $F(x, y, 0)=\left(y e^{x}, x e^{y^{2}}, 0\right)$. Find the divergence of F.

Solution: $\operatorname{div} f(x, y)=y e^{x}+2 y x e^{y^{2}}$
(18) Let $F(x, y, z)=\left(x y z, x e^{y} \ln (z), x^{2}+y^{2}+z^{2}\right)$. Find the curl of F.

Solution:

$$
\left(\begin{array}{c}
2 y-x e^{y} / z \\
x y-2 x \\
e^{y} \ln z-x z
\end{array}\right)
$$

(19) Find the curl of your answer to problem 16.

Solution: 0

(20) Find the divergence of your answer to problem 18.

Solution: 0.

