(1) Let $F(x, y) = (x^2y, y^2x, 3x - 2yx)$. Find the derivative of F.

Name:

Solution:

$$DF(x,y) = \begin{pmatrix} 2xy & x^2 \\ y^2 & 2yx \\ 3-2y & -2x \end{pmatrix}$$

(2) Let F(x, y) = (x - y, x + y) and let $G(x, y) = (x \cos y, x \sin y)$. Find the derivative of $F \circ G$ using the chain rule.

Solution:

$$DF(x,y) = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
$$DG(x,y) = \begin{pmatrix} \cos y & -x \sin y \\ \sin y & x \cos y \end{pmatrix}$$
$$D(F \circ G)(x,y) = DF(G(x,y))DG(x,y)$$
$$= \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \cos y & -x \sin y \\ \sin y & x \cos y \end{pmatrix}$$
$$= \begin{pmatrix} \cos y - \sin y & -x \sin y - x \cos y \\ \cos y + \sin y & -x \sin y + x \cos y \end{pmatrix}$$

(3) Suppose that a rotating circle of radius 1 is travelling through the plane, so that at time t seconds the center of the circle is at the point (t, sin t). Let P be the point on the circle which is at (0, 1) at time t = 0. If the circle makes 3 revolutions per second, what is the path x(t) taken by the point P?

Solution: The rotation of the *P* relative to the center of the circle (that is, in $T_{\mathbf{c}(t)}$) can be described by the path $(\cos(6\pi t + \pi/2), \sin(6\pi t + \pi/2))$. Thus, $\mathbf{x}(t) = (\cos(6\pi t + \pi/2) + t, \sin(6\pi t + \pi/2) + \sin t)$.

(4) A rotating circle of radius 1 follows a helical path in \mathbb{R}^3 so that at time *t* the center of the circle is at $(\sin t, \cos t, t)$. At each time *t*, the circle lies in the osculating plane. (That is, the circle lies in the plane spanned by the unit tangent and the unit normal vectors.) Let

P be the point on the circle which is at (1,0) at time t = 0. The circle completes one rotation every 2π seconds. Find a formula $\mathbf{x}(t)$ for the path taken by the point *P*.

Solution: Relative to the center of the circle (that is, in $T_{\mathbf{c}(t)}$) the point P follows the path $\cos t\mathbf{T} + \sin t\mathbf{N}$ where \mathbf{T} and \mathbf{N} are the unit tangent and unit normal vectors to $\mathbf{c}(t) = (\sin t, \cos t, t)$ respectively. Those formulae are

$$\mathbf{T}(t) = \frac{1}{\sqrt{2}} \begin{pmatrix} \cos t \\ -\sin t \\ 1 \end{pmatrix}$$
$$\mathbf{N}(t) = \begin{pmatrix} -\sin t \\ -\cos t \\ 0 \end{pmatrix}$$

Thus,

$$\mathbf{c}(t) = \cos t\mathbf{T} + \sin t\mathbf{N} + \mathbf{c}(t) \\ = \frac{\cos t}{\sqrt{2}} \begin{pmatrix} \cos t \\ -\sin t \\ 1 \end{pmatrix} + \sin t \begin{pmatrix} -\sin t \\ -\cos t \\ 0 \end{pmatrix} + \begin{pmatrix} \sin t \\ \cos t \\ t \end{pmatrix}.$$

(5) Explain what it means for curvature to be an intrinsic quantity.

Solution: The curvature of a path $\mathbf{x}(t)$ at t_0 , depends only on the curve itself at t_0 , not on the parameterization \mathbf{x} .

(6) Prove that the curvature at any point of a circle of radius r is 1/r.

Solution: A circle of radius r can be parameterized as $\mathbf{x}(t) = (r \cos t, r \sin t)$ for $0 \le t \le 2\pi$. We have:

$$\mathbf{x}'(t) = (-r\sin t, r\cos t)$$

$$||\mathbf{x}'(t)|| = r$$

$$\mathbf{T} = (-\sin t, \cos t)$$

$$\mathbf{T}' = (-\cos t, -\sin t)$$

$$||\mathbf{T}'|| = 1$$

$$\kappa(t) = ||\mathbf{T}'||/||\mathbf{x}'||$$

$$= 1/r.$$

(7) A particle is following the path $\mathbf{x}(t) = (t, t^2, t^3)$ for $1 \le t \le 5$. Find an integral representing the distance travelled by the particle after t seconds. Solution: The distance travelled after t seconds is

$$s(t) = \int_{1}^{t} ||\mathbf{x}'(\tau)|| d\tau = \int_{1}^{t} \sqrt{1 + 4t^2 + 9t^4} d\tau$$

(8) Let $\mathbf{x}(t) = (t^2, 3t^2)$ for $t \ge 1$. Reparameterize \mathbf{x} by arc length.

Solution: We compute,

$$s(t) = \int_{1}^{t} \sqrt{4\tau^{2} + 36\tau^{2}} \, d\tau = \int_{1}^{t} 2\tau \sqrt{10} \, d\tau = \sqrt{10}(t^{2} - 1).$$

Then,

$$s^{-1}(t) = \sqrt{t/\sqrt{10} + 1}$$

Consequently,

$$\mathbf{y}(t) = \mathbf{x} \circ s^{-1}(t) = (t/\sqrt{10} + 1, 3t/\sqrt{10} + 3)$$

is the reparameterization of \mathbf{x} by arclength.

(9) Suppose that x(t) is a path in ℝⁿ such that x(0) = a and x(1) = b (that is, x is a path joining a to b.) Find a path which has the same image as x but which joins b to a.

Solution: $\mathbf{y}: [-1,0] \to \mathbb{R}^n$ defined by $\mathbf{y}(t) = \mathbf{x}(-t)$ will do the trick since $\mathbf{y}(0) = \mathbf{a}$ and $\mathbf{y}(-1) = \mathbf{b}$.

(10) Let x: [a, b] → ℝⁿ be a path with x'(t) ≠ 0 for all t. Let y = x ∘ φ be an orientation reversing reparameterization of x. Suppose that f: ℝ² → ℝ is integrable. Prove that ∫_y f ds = ∫_x f ds.

Solution: Since ϕ is orientation reversing, $|\phi'(t)| = -\phi'(t)$. Hence, $||\mathbf{y}'(t)|| = -||\mathbf{x}'(\phi(t))||\phi'(t)$. Thus,

$$\int_{\mathbf{y}} f \, ds = -\int_{c}^{d} f(\mathbf{x}(\phi(t))) ||\mathbf{x}'(\phi(t))||\phi'(t) \, dt.$$

Substitute $u = \phi(t)$ and $du = \phi'(t)dt$ to get:

$$\int_{\mathbf{y}} f \, ds = -\int_{b}^{a} f(\mathbf{x}(u)) ||\mathbf{x}'(u)|| \, du$$

Reversing the limits of integration eliminates the negative sign and so the result follows.

(11) Let $\mathbf{x}(t) = (t \cos t, t \sin t)$ for $0 \le t \le 2\pi$. Let $f(x, y) = y \cos x$. Let F(x, y) = (-y, x). Find one-variable integrals representing $\int_{\mathbf{x}} f \, ds$ and $\int_{\mathbf{x}} F \cdot d\mathbf{s}$. Solution: Notice that

$$\begin{aligned} \mathbf{x}(t) &= (t\cos t, t\sin t) \\ \mathbf{x}'(t) &= (\cos t - t\sin t, t\cos t + \sin t) \\ ||\mathbf{x}'(t)|| &= \sqrt{(\cos t - t\sin t)^2 + (t\cos t + \sin t)^2} \end{aligned}$$

Thus,

$$\int_{\mathbf{x}} f \, ds = \int_0^{2\pi} t \sin t \cos(t \cos t) \sqrt{(\cos t - t \sin t)^2 + (t \cos t + \sin t)^2} \, dt$$
And

$$\int_{\mathbf{x}} F \cdot ds = \int_{0}^{2\pi} \begin{pmatrix} -t\sin t \\ t\cos t \end{pmatrix} \cdot \begin{pmatrix} \cos t - t\sin t \\ \sin t + t\cos t \end{pmatrix} dt.$$

$$= \int_{0}^{2\pi} t^{2} dt$$

$$= 8\pi^{3}/3.$$

(12) The gravitation vector field in \mathbb{R}^3 is $F(\mathbf{x}) = \mathbf{x}/||\mathbf{x}||^3$. Find an integral representing the amount of work required to move an object through the vector field F along the path $\mathbf{x}(t) = (t \cos t, t \sin t, t)$ for $1 \le t \le 2\pi$.

Solution: Notice that $\mathbf{x}'(t) = (\cos t - t \sin t, \sin t + t \cos t, 1)$ and $||\mathbf{x}'(t)|| = t\sqrt{3}$. Thus, the work required is

$$\int_{1}^{2\pi} F(\mathbf{x}(t)) \cdot \mathbf{x}'(t) \, dt = \int_{1}^{2\pi} \frac{1}{3^{3/2} t^2} \begin{pmatrix} \cos t \\ \sin t \\ 1 \end{pmatrix} \cdot \begin{pmatrix} \cos t - t \sin t \\ \sin t + t \cos t \\ 1 \end{pmatrix} \, dt.$$

This last integral is equal to $\int_1^{2\pi} \frac{2}{3^{3/2}t^2} dt$. That is equal to $2/3^{3/2} - 1/(3^{3/2}\pi)$.

(13) Let F(x, y) = (ax+by, cx+dy) be a transformation of space, where a, b, c, d are constants such that $ad - bc \neq 0$. Suppose that an object is moving in a circle $\mathbf{x}(t) = (\cos t, \sin t)$. Let $\mathbf{y}(t) = F(\mathbf{x}(t))$. If all forces stop acting on an object following the path \mathbf{y} at time $t = \pi$, where will the object be 3 seconds later?

Solution: We find that $\mathbf{y}(\pi) = F(\mathbf{x}(\pi)) = (-a, -c)$. By the chain rule,

$$\mathbf{y}'(t) = DF D\mathbf{x} = (-a\sin t + b\cos t, -c\sin t + d\cos t).$$

Thus the object will follow the path

$$l(t) = t(-b, -d) + (-a, -c)$$

at time $t + \pi$ seconds. Hence, at time $t = \pi + 3$, the particle is at l(3) = (-3b - a, -3d - c).

(14) Let F(x, y) = (-x, y)

(a) Sketch a portion of the vector field F(x, y) = (-x, y).

(b) Sketch a flow line for the vector field starting at (1, 1).

(c) Find a parameterization for the flow line starting at (1, 1).

Solution: $\phi(t) = (e^{-t}, e^t)$.

(d) The vector field F is a gradient field. Find the potential function.

Solution: $f(x, y) = -x^2/2 + y^2/2$.

(15) Let R be the region in \mathbb{R}^2 bounded by the lines x = 0, y = x and y = -x + 2. Let $f(x, y) = x^2 + y^2$. Find $\iint_R f \, dA$.

Solution: By Fubini's theorem:

$$\iint_{R} f \, dA = \int_{0}^{2} \int_{x}^{-x+2} x^{2} + y^{2} \, dy \, dx.$$

(16) Let $f(x, y) = ye^x$. Find the gradient of f.

Solution: $\nabla f(x, y) = (ye^x, e^x).$

(17) Let $F(x, y, 0) = (ye^x, xe^{y^2}, 0)$. Find the divergence of F.

Solution: div $f(x, y) = ye^x + 2yxe^{y^2}$

(18) Let $F(x, y, z) = (xyz, xe^y \ln(z), x^2 + y^2 + z^2)$. Find the curl of *F*.

Solution:

$$\begin{pmatrix} 2y - xe^y/z\\ xy - 2x\\ e^y \ln z - xz \end{pmatrix}$$

(19) Find the curl of your answer to problem 16.

Solution:0

(20) Find the divergence of your answer to problem 18.

Solution: 0.