MA 302: HW 6 additional problems

Answer these questions on a separate sheet of paper. Remember that your work must be very neat and complete.

Problem A: Suppose that $\mathbf{F}=M \mathbf{i}+N \mathbf{j}$ is a C^{1} vector field. Let D be a type 3 region in \mathbb{R}^{2}. Orient ∂D so that D is on the left as ∂D is traversed. In class we showed that

$$
\iint_{D}-\frac{\partial M}{\partial y} d A=\int_{\partial D} M d x
$$

Using similar methods, show the following:

$$
\iint_{D} \frac{\partial N}{\partial x} d A=\int_{\partial D} N d y
$$

Problem B: Let $\mathbf{F}(x, y)=\frac{1}{x^{2}+y^{2}}\binom{-y}{x}$. Let D_{r} be closed disc of radius $r>0$ centered at the origin.
(1) Compute $\int_{\partial D_{r}} \mathbf{F} \cdot d \mathbf{s}$. Does your answer depend on r ?
(2) Explain why Green's theorem cannot be used to calculate the line integral in the previous part.
(3) Calculate curl $\mathbf{F}(x, y)$.
(4) Suppose that $0<r_{0}<r_{1}$. Let R be the region between $\partial D_{r_{0}}$ and $\partial D_{r_{1}}$. Explain why $\iint_{R}(\operatorname{curl} \mathbf{F}) \cdot \mathbf{k} d R$ is defined and calculate it directly.
(5) Explain why the calculation in the previous part, combined with Green's theorem gives another method of showing that the answer from (1) does not depend on r.

Problem C: Suppose that \mathbf{F} is a vector field which is defined and is \mathbf{C}^{1} on all of \mathbb{R}^{2} except for n points: $\mathbf{p}_{1}, \ldots, \mathbf{p}_{n}$. Suppose that $\operatorname{curl} \mathbf{F}(x, y)=\mathbf{0}$ for all $(x, y) \in \mathbb{R}^{2}-\left\{\mathbf{p}_{1}, \ldots, \mathbf{p}_{n}\right\}$. Let C_{1} and C_{2} be two disjoint simple closed curves in $\mathbb{R}^{2}-\left\{\mathbf{p}_{1}, \ldots, \mathbf{p}_{n}\right\}$, both oriented counterclockwise or both oriented clockwise. C_{2} bounds a closed, bounded region inside \mathbb{R}^{2}; assume that C_{1} is contained in that region. Let A be the region between C_{1} and C_{2}.

Prove that if A does not contain any of the points $\left\{\mathbf{p}_{1}, \ldots, \mathbf{p}_{n}\right\}$, then

$$
\int_{C_{1}} \mathbf{F} \cdot d \mathbf{s}=\int_{C_{2}} \mathbf{F} \cdot d \mathbf{s}
$$

Problem D: Construct a vector field \mathbf{F} with the following properties:
(1) \mathbf{F} is not defined at the points $\mathbf{p}_{1}=(0,0)$ and $\mathbf{p}_{2}=(1,0)$. Furthermore, $\lim _{\mathbf{x} \rightarrow \mathbf{p}_{i}} F(\mathbf{x})$ does not exist (for $i=1,2$).
(2) $\operatorname{curl} \mathbf{F}(x, y)=\mathbf{0}$ for $(x, y) \neq \mathbf{p}_{1}, \mathbf{p}_{2}$.
(3) For a smooth simple closed curve C_{1} (oriented counter-clockwise) which encloses \mathbf{p}_{1} but not \mathbf{p}_{2},

$$
\int_{C_{1}} \mathbf{F} \cdot d \mathbf{s}=\pi
$$

(4) For a smooth simple closed curve C_{2} (oriented counter-clockwise) which encloses \mathbf{p}_{2} but not \mathbf{p}_{1},

$$
\int_{C_{2}} \mathbf{F} \cdot d \mathbf{s}=7
$$

After defining \mathbf{F}, answer this question: If C_{3} is a simple closed curve (oriented counter-clockwise) which encloses both \mathbf{p}_{1} and \mathbf{p}_{2}, what must be the value of

$$
\int_{C_{3}} \mathbf{F} \cdot d \mathbf{s} ?
$$

