MA 302: HW 6 additional problems

Answer these questions on a separate sheet of paper. Remember that your work must be very neat and complete.

Problem A: Suppose that $\mathbf{F} = M\mathbf{i} + N\mathbf{j}$ is a C¹ vector field. Let *D* be a type 3 region in \mathbb{R}^2 . Orient ∂D so that *D* is on the left as ∂D is traversed. In class we showed that

$$\iint_D -\frac{\partial M}{\partial y} dA = \int_{\partial D} M \, dx.$$

Using similar methods, show the following:

$$\iint_D \frac{\partial N}{\partial x} dA = \int_{\partial D} N \, dy.$$

Problem B: Let $\mathbf{F}(x,y) = \frac{1}{x^2+y^2} \begin{pmatrix} -y \\ x \end{pmatrix}$. Let D_r be closed disc of radius r > 0 centered at the origin.

- (1) Compute $\int_{\partial D_r} \mathbf{F} \cdot d\mathbf{s}$. Does your answer depend on *r*?
- (2) Explain why Green's theorem cannot be used to calculate the line integral in the previous part.
- (3) Calculate curl $\mathbf{F}(x, y)$.
- (4) Suppose that $0 < r_0 < r_1$. Let *R* be the region between ∂D_{r_0} and ∂D_{r_1} . Explain why $\iint_R (\operatorname{curl} \mathbf{F}) \cdot \mathbf{k} dR$ is defined and calculate it directly.
- (5) Explain why the calculation in the previous part, combined with Green's theorem gives another method of showing that the answer from (1) does not depend on *r*.

Problem C: Suppose that **F** is a vector field which is defined and is C^1 on all of \mathbb{R}^2 except for *n* points: $\mathbf{p}_1, \ldots, \mathbf{p}_n$. Suppose that $\operatorname{curl} \mathbf{F}(x, y) = \mathbf{0}$ for all $(x, y) \in \mathbb{R}^2 - {\mathbf{p}_1, \ldots, \mathbf{p}_n}$. Let C_1 and C_2 be two disjoint simple closed curves in $\mathbb{R}^2 - {\mathbf{p}_1, \ldots, \mathbf{p}_n}$, both oriented counterclockwise or both oriented clockwise. C_2 bounds a closed, bounded region inside \mathbb{R}^2 ; assume that C_1 is contained in that region. Let *A* be the region between C_1 and C_2 .

Prove that if *A* does not contain any of the points $\{\mathbf{p}_1, \ldots, \mathbf{p}_n\}$, then

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{s} = \int_{C_2} \mathbf{F} \cdot d\mathbf{s}.$$

Problem D: Construct a vector field F with the following properties:

- (1) **F** is not defined at the points $\mathbf{p}_1 = (0,0)$ and $\mathbf{p}_2 = (1,0)$. Furthermore, $\lim_{\mathbf{x}\to\mathbf{p}_i} F(\mathbf{x})$ does not exist (for i = 1, 2).
- (2) curl **F**(*x*, *y*) = **0** for $(x, y) \neq \mathbf{p}_1, \mathbf{p}_2$.
- (3) For a smooth simple closed curve C_1 (oriented counter-clockwise) which encloses \mathbf{p}_1 but not \mathbf{p}_2 ,

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{s} = \pi.$$

(4) For a smooth simple closed curve C_2 (oriented counter-clockwise) which encloses \mathbf{p}_2 but not \mathbf{p}_1 ,

$$\int_{C_2} \mathbf{F} \cdot d\mathbf{s} = 7.$$

After defining **F**, answer this question: If C_3 is a simple closed curve (oriented counter-clockwise) which encloses both \mathbf{p}_1 and \mathbf{p}_2 , what must be the value of

$$\int_{C_3} \mathbf{F} \cdot d\mathbf{s}?$$