Solutions to additional problems on HW 3

Answer these questions on a separate sheet of paper. Remember that your work must be very neat and complete.

Problem A: Let $\phi: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be a parameterized curve. In class, we learned how to reparameterized ϕ to become a curve $\phi(s)$ so that for $0 \leq s \leq t, \phi(s)$ has length t. Let $k>0$ be a constant. Show how to reparameterize ϕ to a curve $\phi(u)$ so that for $0 \leq u \leq t, \phi(u)$ has length exactly $k t$.

Problem Solution:: Let $\mathbf{y}(t)$ be the result of reparameterizing $\phi(t)$ by arc length. Define $\psi(t)=\mathbf{y}(k t)$.

Claim: The arc length of ψ on the interval $[0, t]$ is $k t$.
proof of Claim: Notice that $\psi^{\prime}(t)=k y^{\prime}(k t)$ by the Chain Rule. Thus,

$$
\int_{0}^{t}\left\|\psi^{\prime}(\tau)\right\| d \tau=k \int_{0}^{t}\left\|\mathbf{y}^{\prime}(k \tau)\right\| d \tau
$$

Let $w=k \tau$. Then $d w=k d \tau$. Thus, by substitution the above expression is equal to

$$
\begin{gathered}
k \int_{0}^{k t}\left\|\mathbf{y}^{\prime}(w)\right\|(1 / k) d w= \\
\int_{0}^{k t}\left\|\mathbf{y}^{\prime}(w)\right\| d w .
\end{gathered}
$$

Since \mathbf{y} is parameterized by arc length, $\int_{0}^{k t}\left\|\mathbf{y}^{\prime}(w)\right\| d w=k t$. Thus, the arclength of ψ on $[0, t]$ is $k t$.
Recall that $\mathbf{y}=\phi \circ s^{-1}$ where $s(t)=\int_{a}^{t}\left\|\phi^{\prime}(\tau)\right\| d \tau$. Let $\alpha(t)=k t$. Then,

$$
\psi=\mathbf{y} \circ \alpha=\mathbf{x} \circ s^{-1} \circ \alpha .
$$

Notice that $s^{-1} \circ \alpha=\left(\alpha^{-1} \circ s\right)^{-1}$ so that

$$
s^{-1} \circ \alpha(t)=(s(t) / k)^{-1}
$$

That is, if

$$
u(t)=\frac{1}{k} \int_{a}^{t}\left\|\phi^{\prime}(\tau)\right\| d \tau
$$

then

$$
\mathbf{x} \circ \mathbf{u}^{-1}
$$

is a reparameterization of \mathbf{x} with the desired property.
Problem B: Suppose that at time t a circle of radius ρ is tangent to the parameterized curve $\phi(t)$ where $\phi: \mathbb{R} \rightarrow \mathbb{R}^{2}$. What is a parameterization for
the path taken by the center of the circle? (There are two possible answers, depending on which side of the curve the circle lie.)

Problem Solution:: At time t, the tangent vector to $\phi(t)=(x(t), y(t))$ is $\phi^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t)\right)$. This tangent vector is perpendicular to both $\mathbf{v}(t)=$ $\left(-y^{\prime}(t), x^{\prime}(t)\right)$ and $\mathbf{w}(t)=\left(y^{\prime}(t),-x^{\prime}(t)\right)$. Both vectors have magnitude, $\left\|\phi^{\prime}(t)\right\|$. Thus the center of the circle lies at either $\mathbf{c}(t)=\phi(t)+\rho \mathbf{v}(t) /\|\mathbf{v}(t)\|$ or $\mathbf{c}(t)=\phi(t)+\rho \mathbf{w}(t) /\|\mathbf{w}(t)\|$.
Problem C: Suppose that at time $t=0$, a circle of radius ρ is tangent to the parameterized curve $\phi(t)$. The circle rolls along the image of $\phi(t)$ in such a way that at time t, the circle is tangent to $\phi(t)$. Let P be the point on the circle directly to the right of the center of the circle at $t=0$. In this problem, you will find a parameterization of the path $\mathbf{x}(t)$ taken by P.
(1) Find a parameterization $\mathbf{c}(t)$ for the path taken by the center of the circle. (Hint: use your work from problem B above.)
Problem Solution:: Use either of the formulas for $\mathbf{c}(t)$ given in the solution to Problem B.
(2) Find coordinates for $\mathbf{x}(t)$ in the tangent space $T_{\mathbf{c}}(t)$.

Problem Solution:: Let $s(t)$ denote the arclength of ϕ after t seconds. After t seconds, the circle has rolled a distance of $s(t)$ along the image of $\phi(t)$. (This is because the circle is always tangent to the image of ϕ at $\phi(t)$.) The distance the circle travels along the curve ϕ after t seconds is ρ times the angle $\theta(t)$ through which P travels (clockwise). (This is because we are measuring θ in radians.) Consequently,

$$
s(t)=\rho \theta(t)
$$

The rotation of the circle is parameterized as $\mathbf{x}(t)=(\cos (-\theta(t)), \sin (-\theta(t)))$. The negative sign was introduced because the circle is rotating clockwise. If it is rotating counter-clockwise you don't need the negative sign. (The problem doesn't actually specify which direction the circle is rolling.) Thus, in tangent space coordinates,

$$
\mathbf{x}(t)=\rho(\cos (-s(t) / \rho), \sin (-s(t) / \rho))
$$

where $s(t)=\int_{a}^{t}\left\|\phi^{\prime}(\tau)\right\| d \tau$.
(3) Find coordinates for $\mathbf{x}(t)$ in the usual coordinate system.

Problem Solution:: $\mathbf{x}(t)=\mathbf{c}(t)+\rho(\cos (-s(t) / \rho), \sin (-s(t) / \rho))$.

Problem D: This is the same problem as problem C, but instead of the circle being tangent to the image of $\phi(t)$ at time t, the circle is rolling along the image of $\phi(t)$ so that it makes 1 revolution per second.
(1) At time t seconds, how far along the image of ϕ has the circle rolled?

Problem Solution:: $2 \pi \rho t$.
(2) Find a reparameterization $\psi(t)$ of $\phi(t)$ so that at time t, the circle is tangent to the point $\psi(t)$. (Hint: Use problem A above)

Problem Solution:: Define $k=2 \pi \rho$ and use the parameterization $\psi(t)$ given by Problem A to get $\mathbf{c}(t)$.
(3) Find coordinates for $\mathbf{x}(t)$ in the usual coordinate system. (Your answer will likely have an inverse function in the expression - you won't be able to get it in closed form.)

Problem Solution:: Use $\mathbf{x}(t)=\mathbf{c}(t)+\rho(\cos (-s(t) / \rho), \sin (-s(t) / \rho))$.

