Problem Set 5

MA 111 Spring 2010

Give complete and thorough answers to these problems on separate sheets of paper. The assignment is due in class on April 2. This assignment is for extra-credit.
Problem A: Do the symmetries $[1 \leftrightarrow 2] \circ[3 \leftrightarrow 4]$ and $[2 \rightarrow 3 \rightarrow 4 \rightarrow]$ generate \mathbb{S}_{4} ? Why or why not? If they do not, how many elements are in the subgroup generated by them?

Problem B: Recall that D_{6} consists of the symmetries of a regular hexagon. Call the upper right corner of the hexagon P. Label the reflections as in the picture. The rotational symmetries are $\mathbf{I}, R_{60}, R_{120}, R_{180}, R_{240}, R_{300}$.

(1) Write down all the symmetries in D_{6} which do not move P. Explain why this is a subgroup of D_{6}. Call this subgroup H. (It is called the "stabilizer" of P.)
(2) For each corner of the hexagon, write down all the symmetries in D_{6} which move P to that corner. Show that these are the cosets of H in D_{6}.

Problem C: Let X be an object and let G be its group of symmetries. Assume that G has finitely many symmetries. Let p be a specific point in X. (You may wish to compare this problem to the previous one.)
(1) Let H be the set of all symmetries in G which do not move P. Explain why H is a subgroup of G. (It is called the "stabilizer" of x in G.)
(2) Suppose that S and T are two symmetries in G which move P to the same point Q. Prove that S and T are in the same coset of H in G. (In other words, you must show that there exists a symmetry h in H so that $S=T \circ h$.
(3) Suppose that S and T are two symmetries in G which are in the same coset of H in G. Prove that S and T move P to the same point in X.
(4) If P can be moved to a point Q in X by a symmetry in G, we say that Q is in the "orbit" of P. Use the previous parts of this problem and LaGrange's theorem to show that the number of symmetries in the stabilizer of P times the number of points in the orbit of X is equal to the number of symmetries in G.

Problem D: Show that the symmetries [123], [124], [134], [234] generate \mathbb{A}_{4}. Use this to show that the symmetries of a tetrahedron are the group \mathbb{A}_{4}.

