Problem Set 4

MA 111 Spring 2010

Give complete and thorough answers to these problems on separate sheets of paper. The assignment is due in class on March 31.

Problem A: In class we defined a function F which determines whether or not a certain configuration of the 15-puzzle is solvable. We proved that if F has a value of -1 then the configuration is not solvable. Give a careful, thorough, and complete explanation of why that is the case. In other words, explain our proof in your own words.

Problem B: You are handed a sliding block puzzle with numbered blocks in the following pattern. The lower right hand space does not have a block. You are asked to solve the puzzle. Explain why this cannot be done.

1	2	3	4
5	6	7	8
12	9	10	11
13	14	15	

Problem C: Explain why it is impossible to decorate a regular decagon so that the decorated decagon has exactly 8 symmetries.

Problem D: Recall that D_6 consists of the symmetries of a regular hexagon. Label the reflections as in the picture. The rotational symmetries are **I**, R_{60} , R_{120} , R_{180} , R_{240} , R_{300} . Consider the subgroup

$$H = \{\mathbf{I}, R_{120}, R_{240}\}$$

List all the cosets of H in D_6 .

Problem E: Think of $g = [1 \rightarrow 2 \rightarrow 3 \rightarrow] \circ [4 \rightarrow 5 \rightarrow 6 \rightarrow]$ as a symmetry in \mathbb{S}_6 . Let $H = \langle g \rangle$.

- (1) How many symmetries are in H?
- (2) Explain why g is in A_6 .
- (3) Explain why *H* is a subgroup of both A_6 and \mathbb{S}_6 . (4) How many distinct cosets of *H* in \mathbb{S}_6 are there? (5) How many distinct cosets of *H* in \mathbb{A}_6 are there?