Problem Set 4

MA 111 Spring 2010

Give complete and thorough answers to these problems on separate sheets of paper. The assignment is due in class on March 31.

Problem A: In class we defined a function F which determines whether or not a certain configuration of the 15 -puzzle is solvable. We proved that if F has a value of -1 then the configuration is not solvable. Give a careful, thorough, and complete explanation of why that is the case. In other words, explain our proof in your own words.

Problem B: You are handed a sliding block puzzle with numbered blocks in the following pattern. The lower right hand space does not have a block. You are asked to solve the puzzle. Explain why this cannot be done.

1	2	3	4
5	6	7	8
12	9	10	11
13	14	15	

Problem C: Explain why it is impossible to decorate a regular decagon so that the decorated decagon has exactly 8 symmetries.
Problem D: Recall that D_{6} consists of the symmetries of a regular hexagon. Label the reflections as in the picture. The rotational symmetries are $\mathbf{I}, R_{60}, R_{120}, R_{180}$, R_{240}, R_{300}. Consider the subgroup

$$
H=\left\{\mathbf{I}, R_{120}, R_{240}\right\}
$$

List all the cosets of H in D_{6}.

Problem E: Think of $g=[1 \rightarrow 2 \rightarrow 3 \rightarrow] \circ[4 \rightarrow 5 \rightarrow 6 \rightarrow]$ as a symmetry in \mathbb{S}_{6}. Let $H=\langle g\rangle$.
(1) How many symmetries are in H ?
(2) Explain why g is in A_{6}.
(3) Explain why H is a subgroup of both A_{6} and \mathbb{S}_{6}.
(4) How many distinct cosets of H in \mathbb{S}_{6} are there?
(5) How many distinct cosets of H in \mathbb{A}_{6} are there?

