Exam 1 Study Guide

MA 111 Spring 2010

1. READING QUESTIONS

- (1) Why do mirrors seem to reflect left/right but not up/down?
- (2) What is the Ozma problem and how can it be solved?
- (3) What is an *enantiomorph*? What are some examples from nature?
- (4) What does it mean to say that parity is not conserved in weak interactions?
- (5) What was "Mach's shock"? Why doesn't it give an example of asymmetry in physics?

2. Some math

- (1) Give an example of a planar shape with non-trivial rotational symmetry.
- (2) Give an example of a planar shape with non-trivial rotational symmetry, but no bilateral symmetry.
- (3) Define the following groups or terminology:

group	even permutation
D_n	subgroup
\mathbb{S}_n	cycle number
transposition	odd permutation
C_n	generators for a group
braid group	identity in a group
associative property	inverse of a symmetry
generators	

- (4) Is \mathbb{R} (the real numbers) with addition a group? Is \mathbb{R} with subtraction a group?
- (5) Carefully explain why D_n can be generated by a rotation and a reflection.
- (6) Carefully explain why D_n can be generated by two reflections.
- (7) Carefully explain why \mathbb{S}_n can be generated by transpositions.
- (8) Carefully explain why each symmetry in \mathbb{S}_n is either a combination of an even number of transpositions or an odd number of transpositions, but not both.
- (9) Removed

- (10) Explain why the symmetries [12][34] and [23][45] generate the subgroup of \mathbb{S}_5 corresponding to the plain hunt.
- (11) Find all symmetries in the subgroup $\langle [123] [45], [45] \rangle$ of \mathbb{S}_5 .
- (12) Show that R_{144} generates C_5
- (13) How many symmetries are in the subgroup $\langle [123] [45] \rangle$ of \mathbb{S}_5 ?
- (14) How many symmetries are in the subgroup $\langle [123] | 45 \rangle \rangle$ of \mathbb{S}_5 ?
- (15) Suppose that *S* and *T* are two symmetries in a group. Show that $(T \circ S)^{-1} = S^{-1} \circ T^{-1}$.
- (16) Explain why D_3 and \mathbb{S}_3 are essentially the same group.
- (17) Explain why D_n is a subgroup of \mathbb{S}_n for all n.
- (18) Prove that D_n is not the same group as \mathbb{S}_n if $n \ge 4$.
- (19) If G is a group of symmetries of an object X and if H is a subgroup of G, give a method for decorating X so that H is the group of symmetries of the decorated object X. Explain why the method may not always work.
- (20) The subgroup D_8 has 8 rotations and 8 reflections. The rotations are

 $\mathbf{I}, R_{45}, R_{90}, R_{135}, R_{180}, R_{225}, R_{270}, R_{315}.$

The reflections are drawn below.

Perform the following computations

- (a) $R_{45} \circ a$
- (b) $a \circ R_{45}$
- (c) $R_{135} \circ g$
- (d) $R_{135} \circ g \circ R_{135}$

(21) Perform the following computations in \mathbb{S}_5 :

- (a) [123][254]
- (b) [12] [23] [35] [54]
- (22) Let g = [123456][789] in \mathbb{S}_9 .
 - (a) Let t = [25]. Draw convincing pictures to show how the cycle number of $g \circ t$ differs from the cycle number of g.
 - (b) Let t = [48]. Draw convincing pictures to show how the cycle number of $g \circ t$ differs from the cycle number of g.
- (23) Determine whether the following symmetries are odd or even permutations.
 - (a) [246][13]
 - (b) [1234][567]
 - (c) [239][1485][10115]
 - (d) [2345][3456].