Sperner's Lemma

The purpose of this note is to elaborate the proof of Sperner's Lemma.
Theorem (Theorem 2.25). Let \mathscr{T} be a triangulation of an n-dimensional simplex Δ. Suppose that each vertex of \mathscr{T} has been assigned a number from the set $\{0, \ldots, n\}$. Then the number of completely labelled n-simplices of \mathscr{T} is odd if and only if the number of completely labelled $(n-1)$-simplices of the triangulation $\mathscr{T} \cap \partial \Delta$ is odd.

The first step of Theorem 2.25 is: Suppose that D is an n-simplex of \mathscr{T}. Then the following statments hold:
(1) D is completely labelled $\Leftrightarrow D$ has exactly exactly one completely labelled ($n-1$)-dimensional face.
(2) D is not completely labelled \Leftrightarrow either D has no completely labelled faces or D has two completely labelled faces.

Pull apart \mathscr{T} to obtain a collection T of disjoint n-simplices. (See the figure.)

\mathscr{T}

T

From (1) and (2) we obtain:
(3) The number of completely labelled n-simplices in \mathscr{T} is congruent modulo 2 to the number of completely labelled $(n-1)$-dimensional faces of T.

Now it is clear that:
(4) $\{$ completely labelled $(n-1)$-faces of $T\}=$
$\{$ completely labelled $(n-1)$ faces of T on $\partial \Delta\} \cup$
$\{$ completely labelled $(n-1)$-faces of T not on $\partial \Delta\}$
Notice that the two sets on the right hand side are disjoint.

Consider an $(n-1)$-face F of T. If F appears on the boundary of Δ then it is in exactly one n simplex of T. If F is not on $\partial \Delta$ then F appears in exactly two n-simplices of T. Thus, the set

$$
\{\text { completely labelled }(n-1) \text {-faces of } T \text { not on } \partial \Delta\}
$$

has an even number of elements. That is
(5) The number of completely labelled ($n-1$)-dimensional faces of T is congruent modulo 2 to the number of completely labelled ($n-1$)-faces on $\partial \Delta$.

Putting observations (3) and (5) together we obtain

- The number of completely labelled n-simplices in \mathscr{T} is congruent modulo 2 to the number of completely labelled $(n-1)$-faces on $\partial \Delta$.

This is what we were to prove.

\mathscr{T}

T

