Simplices

Definition 1. Suppose that $v_{0}, \ldots, v_{k} \in \mathbb{R}^{n}$. The convex hull of $\left\{v_{0}, \ldots, v_{k}\right\}$ is the smallest convex set containing v_{0}, \ldots, v_{k}. It is denoted $C H\left(v_{0}, \ldots, v_{k}\right)$. It turns out that
$C H\left(v_{0}, \ldots, v_{k}\right)=\left\{w \in \mathbb{R}^{n}: \exists \lambda_{0}, \ldots, \lambda_{k} \in \mathbb{R}\right.$ s.t. $w=\sum \lambda_{i} v_{i}$ and $\left.\sum \lambda_{i}=1\right\}$.
Definition 2. A vector subspace of \mathbb{R}^{n} is a subset which is closed under (finite) linear combinations. An affine subspace is a subset which is the translation of a vector subspace. That is, W is an affine subspace of \mathbb{R}^{n} if and only if there exists a vector subspace V and a vector a such that for each $w \in W$ there exists $v \in V$ so that $w=a+v$. We denote this

$$
W=a+V .
$$

The dimension of W is defined to be the dimension of V (as a subspace of \mathbb{R}^{n} - this is not topological dimension).

Definition 3. Suppose that $v_{0}, \ldots, v_{k} \in \mathbb{R}^{n}$. Then v_{0}, \ldots, v_{k} are affinely independent iff for each collection of $m+1$ distinct points $w_{0}, \ldots, w_{m} \in$ $\left\{v_{0}, \ldots, v_{k}\right\}$ there is no $m-1$ dimensional affine subspace containing w_{0}, \ldots, w_{m}. Equivalently, v_{0}, \ldots, v_{k} are affinely independent if the vectors $v_{1}-v_{0}, v_{2}-$ $v_{0}, \ldots, v_{k}-v_{0}$ are linearly independent in \mathbb{R}^{n}.

Example. Two points are affinely independent if and only if they are not the same. Three points are affinely independent if and only if they are not collinear. \mathbb{R}^{n} contains at most $n+1$ affinely independent points.

Definition 4. A k-dimensional simplex Δ in \mathbb{R}^{n} is the convex hull of $k+1$ affinely independent points. If we need to specify the points, we will sometimes write $\Delta=\Delta\left(v_{0}, \ldots, v_{k}\right)$, where v_{0}, \ldots, v_{k} are the affinely independent points. An l-dimensional face of Δ is the convex hull of distinct points $w_{0}, \ldots, w_{l} \in\left\{v_{0}, \ldots, v_{k}\right\}$. We consider \varnothing to be a (-1)-dimensional face of every simplex. The standard n-simplex is the convex hull of $0, e_{1}, \ldots, e_{n}$ where e_{i} is the i th standard basis vector of \mathbb{R}^{n}.

Definition 5. Suppose that $P \subset \mathbb{R}^{n}$ is the union of finitely many simplices \mathscr{T} (not necessarily of the same dimension). Then \mathscr{T} is a (geometric) triangulation of P if whenever σ, τ are simplices in \mathscr{T} then $\sigma \cap \tau$ is a face of each.

