Closed Sets and Sequential Compactness

Definition 1. Let X be a topological space and suppose that $\left\{x_{n}\right\}$ is a sequence in X and that $l \in X$. Then l is a limit point of the sequence $\left\{x_{n}\right\}$ iff for every open set U containing l there is an $N \in \mathbb{N}$ so that for all $n \geq N$, $x_{n} \in U$.

Suppose that $A \subset X$ and that $l \in X$. Then l is a limit point of A iff for every open set U containing l, there is an $a \in U \cap A$ such that $a \neq l$. The closure of A, denoted \bar{A} is defined to be $A \cup$ limit points of A.
Example. Consider the sequence $\left\{x_{n}\right\} \subset \mathbb{R}$ where, for all $n, x_{n}=0$. Then 0 is a limit point of $\left\{x_{n}\right\}$ as a sequence, but not as a set. In other words, the two definitions of limit point do not necessarily agree for sequences.
Lemma 2. Suppose that X is a topological space and that $A \subset X$. Then \bar{A} is a closed subset of X.

Proof. We will show that $X \backslash \bar{A}$ is an open set. Let $c \in X \backslash \bar{A}$. Since c is neither in A nor is a limit point of A, there exists an open set U containing c so that $U \cap A=\varnothing$. Suppose that $l \in U$. Since U is an open set containing l and is disjoint from A, l cannot be a limit point of A. Also, $l \notin A$. Thus, $\bar{A} \cap U=\varnothing$. Thus, U is an open set containing c which is disjoint from \bar{A}. Since c was arbitrary, $X \backslash \bar{A}$ is open.
Lemma 3. Suppose that X is a topological space and that $A \subset X$. Suppose that C is a closed set containing A. Then $\bar{A} \subset C$.

Proof. Suppose that $l \in X \backslash C$ is a limit point of A. Since C is closed, $X \backslash C$ is open. Since l is a limit point of a, the set $A \cap X \backslash C$ is non-empty. But this contradicts the hypothesis that $A \subset C$.

The previous two sets show that \bar{A} is the smallest closed set in X containing A. This observation proves that:
Corollary 4. Suppose that $A \subset X$. Then A is closed if and only if $A=\bar{A}$.
An immediate application is:
Corollary 5. Suppose that $A \subset \mathbb{R}$ is a closed, bounded set. Then $\inf A \subset A$ and $\sup A \subset A$.

Proof. Notice that $\inf A$ and $\sup A$ exist as A is a bounded subset of \mathbb{R}. It suffices to show that $\inf A$ and $\sup A$ are limit points of A. We will do this for $\sup A$. By definition of supremum, if $\alpha \geq x$ for all $x \in A$, then $\alpha \geq \sup A$. Thus, each interval of the form $(\sup A-\varepsilon, \sup A]$ contains a point of A. Since
every open set containing $\sup A$ contains an interval of that $\operatorname{form}, \sup A$ is a limit point of A.

Here is another application:
Corollary 6. The topological dimension of $[0,1]$ is at least 1 .
Proof. We must show that there exists $\varepsilon>0$ such that for all finite closed covers \mathscr{U} of $[0,1]$ so that for all $U \in \mathscr{U}$, $\operatorname{diam} U<\varepsilon$, there exist two distinct sets $U_{1}, U_{2} \in \mathscr{U}$ such that $U_{1} \cap U_{2} \neq \varnothing$. (i.e. the order of \mathscr{U} is at least two.)
Choose $\varepsilon=1 / 2$ and let \mathscr{U} be a finite closed cover of $[0,1]$ so that each set in \mathscr{U} has diameter less than $\varepsilon=1 / 2$. Let U_{1} be a set in \mathscr{U} containing 0 . Since $\operatorname{diam}[0,1]=1,1 \notin U_{1}$. Let $\alpha=\inf U_{1}$. Since U_{1} is closed, $\alpha \in U_{1}$. Consider the points $x_{n}=\alpha+1 / n$ (for which $\alpha+1 / n<1$). The cover \mathscr{U} is finite, so there exists $U \in \mathscr{U}$ which contains infinitely many of the x_{n}. Since the sequence $\left\{x_{n}\right\}$ converges to α, α is a limit point of U. (proof?) Since U is closed, $\alpha \in U$. Thus $\alpha \in U \cap U_{1} \neq \varnothing$.

Definition 7. A topological space X is sequentially compact iff every sequence $\left\{x_{n}\right\} \subset X$ has a convergent subsequence.

Theorem 8. If a metric space (X, d) is compact then it is sequentially compact.

In fact, the converse also holds, but the proof is more difficult.
Proof. Suppose that X is a compact metric space. Let $S=\left\{x_{n}\right\}$ be a sequence in X. We wish to show that S has a convergent subsequence.
Case 1: S is a closed subset of X.
Since X is a compact metric space, S being closed implies that S is compact. Let

$$
\varepsilon_{n}=\min \left\{d\left(x_{n}, x_{m}\right) \mid m<n \text { and } x_{m} \neq x_{n}\right\}
$$

Notice that ε_{n} exists and is nonzero. Then $\mathscr{B}=\left\{B_{\varepsilon_{n}}\left(x_{n}\right)\right\}$ is an open cover of S such that distinct points of S are in disjoint sets in the cover. Since S is compact, there are a finite number of points x_{1}, \ldots, x_{n} so that $\left\{B_{x_{i}} \mid 1 \leq i \leq n\right\}$ is a cover of S. In other words, as a set $S=\left\{x_{1}, \ldots x_{m}\right\}$. Since S is an infinite sequence, there is some point x_{k} which appears infinitely often. Let $\mathscr{N}=\left\{n \in \mathbb{N}: x_{n}=x_{k}\right\}$. Then $\left\{x_{n}: n \in \mathscr{N}\right\}$ is a subsequence of $\left\{x_{i}\right\}$ which is constant, and therefore converges.
Case 2: S is not closed.

Since S is not closed, $S \neq \bar{S}$. Let $l \in \bar{S}$. If $m \in \mathbb{N}$, the set $B_{1 / m}(l) \cap S$ is non-empty (since l is a limit point of S). Let x_{m} be a point in $B_{1 / m}(l) \cap S$. These points $\left\{x_{m}\right\}$ are a subsequence of $\left\{x_{n}\right\}$ which converges to l.

