
Point-Set Topology

1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS

Definition 1.1. Let X be a set and T a subset of the power set P(X) of X .
Then T is a topology on X if and only if all of the following hold

(a) ∅ ∈ T
(b) X ∈ T
(c) (Arbitrary unions) If Aα ∈ T for α in some index set I then⋃

α∈I

Aα ∈ T .

(d) (Finite intersections) If Bβ ∈ T for β in some finite set I then⋂
β∈I

Bβ ∈ T .

If T is a topology on X , then (X, T ) is a topological space. Sometimes, if
T is understood we say that X is a topological space. If U ∈ T then U is
an open set. If V ⊂ X and X\V is open, then V is closed. Notice that in
any topological space (X, T ), both X and ∅ are sets which are both open
and closed. It is possible for a set to be neither open nor closed.

Exercise 1.2. Show that the Finite intersections axiom is equivalent to:

• If A,B ∈ T then A ∩B ∈ T .

Exercise 1.3. Let X be any set. Prove that the following are topologies on
X

(a) (the discrete topology) T = P(X)
(b) (the indiscrete topology) T = {∅, X}

Exercise 1.4. LetX = {a, b, c, d}. Find all topologies onX containing five
or fewer sets and prove that your list is complete.

Exercise 1.5. Let (X,X ) be a topological space. Prove that a set U ⊂ X
is open if and only if for all x ∈ U there exists an open set Ux such that
x ∈ Ux and Ux ⊂ U .

1



2

Definition 1.6. Let X be a set and let B ⊂ P(X). Let T be the smallest
topology on X containing B. That is, B ⊂ T and if T ′ is a topology on X
such that B ⊂ T ′ then T ⊂ T ′. We say that B generates the topology T .

Exercise 1.7. Let X be a set and let B ⊂ P(X). Consider the set T con-
sisting of all topologies on X such that each set in B is open. Let T be the
intersection of all the topologies in T. Prove that T is a topology on X and
that B generates T .

Exercise 1.8. LetX be a set and let B ⊂ P(X). Let T denote the set which
contains U ⊂ X if and only if at least one of the following holds:

• U is the (arbitrary) union of sets in B
• U is the finite intersection of sets in B
• U = ∅
• U = X .

Prove that T is a topology on X and that B generates T .

Definition 1.9. Let (X, T ) be a topological space. A set B ⊂ T is a base
for T if each element of T can be written as the union of elements of B.

Remark 1.10. Notice that a generating set B for a topology may or may
not be a base for the topology.

Exercise 1.11. Let X = R and let B consist of all intervals in R of the
form (a, b) with a < b. Let T be the topology generated by B. T is called
the usual topology on R. You do not need to give completely rigourous
answers to the following questions.

(a) Describe the sets in T .
(b) Give an example of a set in R which is neither open nor closed.

Definition 1.12. Let X be a set and let d : X ×X → R be a function such
that

(a) (Positive) For all x, y ∈ X , d(x, y) ≥ 0
(b) (Definite) d(x, y) = 0 if and only if x = y.
(c) (Symmetric) For all x, y, d(x, y) = d(y, x).
(d) (Triangle inequality) For all x, y, z ∈ R, d(x, z) ≤ d(x, y) + d(y, z)

The function d is a metric on X and (X, d) is a metric space.

Exercise 1.13. Prove that the following are metrics on R.

(a) (the usual metric) d(x, y) = |x− y|
(b) (the discrete metric) d(x, y) = 1 if x 6= y and d(x, y) = 0 if x = y.
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Exercise 1.14. Prove that the following are metrics on Rn. Let xi denote
the ith component of x ∈ Rn.

(a) (the usual metric) du(x, y) =
√∑

i(xi − yi)2

(b) (the sup metric) ds(x, y) = maxi{|xi − yi|}
(c) (the taxicab metric) dt(x, y) =

∑
i |xi − yi|

Exercise 1.15. (The comb metric) Let X = {(x1, x2) ∈ R2 : x2 ≥ 0}.
Consider the following function d : X ×X → R:

d((x1, x2), (y1, y2)) =

{
0 if (x1, x2) = (y1, y2)

|x2 − y2| if x1 = y1

|x2|+ |y2|+ |x1 − y1| if x1 6= y1

Prove that d is a metric and describe the shortest path between two points
in X .

Definition 1.16. Let (X, d) be a metric space. For x ∈ X and ε > 0 let

Bε(x) = {y ∈ X : d(x, y) < ε}.
Let T be the topology generated by

{Bε(x) : x ∈ X and ε > 0}.
We say that d generates the topology T .

Exercise 1.17. Let T be the topology generated by d. Show that the metric
balls Bε(x) are a base for T .

Exercise 1.18. Prove that the usual metric on R generates the usual topol-
ogy on R.

Example 1.19. Prove that the topology generated by the usual metric is the
same as the topology generated by the taxicab metric.

Proof. Let T u and T t denote the topologies generated by the usual metric
and the taxicab metric respectively. We desire to show that T u = T s.
Let Bu

ε (x) denote a ball in the usual metric and let Bt(x) denote a ball in
the taxicab metric. Since T u is the smallest topology on Rn containing
{Bu

ε (x)}, if each Bu
ε (x) is in T t then, since T t is a topology, T u ⊂ T t.

Similarly, if each Bt
ε(x) is in T u, then T t ⊂ T u. Thus, to show that T t =

T u, we need only show that open balls in one metric space are open in the
other metric space. Note, however, that they will likely not be open balls in
the other metric space.

We begin by showing that each ball Bu
ε (x) is the union of open balls in the

taxicab metric. By Exercise 1.5, this is equivalent to showing that for all
z ∈ Bu

ε (x), there exists δ > 0 so that Bt
δ(z) ⊂ Bu

ε (x).
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Let ∆ = d(x, z). Choose δ so that 0 < δ < ε−∆. Let y ∈ Bt
δ(z). We must

show that y ∈ Bε(x). This is equivalent to showing that d(x, y) < ε.

By the triangle inequality,

d(x, y) ≤ ∆ + d(z, y) = ∆ +

√∑
i

(zi − yi)2.

By properties of the square root:

∆ +

√∑
i

(zi − yi)2 ≤ ∆ +
∑
i

√
(zi − yi)2 = ∆ +

∑
i

|zi − yi|.

Notice that this means:

d(x, y) ≤ ∆ + dt(z, y) < ∆ + ε−∆ = ε

as desired. This shows that T u ⊂ T t.

We next show that T t ⊂ T u. Let z ∈ Bt
ε(x). We desire to show that there

exists δ > 0 so that Bu
δ (z) ⊂ Bt

ε(x). Before beginning the proof we need:

Lemma. For all non-negative real numbers a and b
√
a+
√
b ≤ 2

√
a+ b.

Proof of Lemma. Square both sides of the inequality to obtain the equiva-
lent inequality:

a+ 2
√
ab+ b ≤ 4a+ 4b.

Rearrange to obtain the equivalent inequality:

2
√
ab ≤ 3a+ 3b.

Square both sides to obtain the equivalent inequality

4ab ≤ 9a2 + 18ab+ 9b2.

Hence,
0 ≤ 9a2 + 14ab+ 9b2

is an inequality equivalent to the one we are trying to achieve. This is
obviously true (since a, b ≥ 0) so the original inequality is also true. �

Let ∆ = dt(x, z). Choose δ so that 0 < δ < (ε−∆)/2n−1. Let y ∈ Bδ(z).
We need to show that dt(x, y) < ε. By the triangle inequality:

dt(x, y) ≤ ∆ + dt(z, y) = ∆ +
n∑
i=1

|zi − yi|.
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Thus,

dt(x, y) ≤ ∆ +
n∑
i=1

√
(zi − yi)2

Combining the lemma with a proof by induction shows:

n∑
i=1

√
(zi − yi)2 ≤ 2n−1

√√√√ n∑
i=1

(zi − yi)2.

Thus,
dt(x, y) ≤ ∆ + 2n−1d(z, y).

Since y ∈ Bδ(z), by the definition of δ we have

dt(x, y) < ∆ + 2n−1
(ε−∆

2n−1

)
= ∆ + ε−∆ = ε.

Since y was arbitrary, Bt
ε(x) ∈ T u. Thus, T t ⊂ T u.

Consequently, T t = T u as desired. �

Exercise 1.20. Prove that the usual metric, the sup metric, and the taxicab
metric all generate the same topology of Rn.

Definition 1.21. Suppose that f : X → Y is a function and that A ⊂ X .
The function f |A : A→ Y defined by f |A(a) = f(a) for all a ∈ A is called
the restriction of f to A. Often we will write f rather than f |A.

Exercise 1.22. The usual metric on R2 restricts to be a metric on the closed
upper half space of R2 (i.e. {(x, y) : y ≥ 0}). Does the usual metric on
the closed upper half space generate the same topology as the comb metric?
(See Exercise 1.15.)

Definition 1.23. Let (X,X ) and (Y,Y) be topological spaces. Let f : X →
Y be a function. If U ⊂ Y , let

f−1(U) = {x ∈ X : f(x) ∈ U}.

Define f to be continuous if and only if for every open set U ⊂ Y the set
f−1(U) is open in X .

Exercise 1.24. Let (X,X ) and (Y,Y) be topological spaces and let f : X →
Y be a function.

(a) Suppose that there exists c ∈ Y such that f(x) = c for all x ∈ X .
(That is, f is a constant function.) Prove that f is continuous.

(b) Suppose that X is the discrete topology. Prove that f is continuous.
(c) Suppose thatY is the indiscrete topology. Prove that f is continuous.
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Exercise 1.25. Let X and Y be topological spaces. Let f : X → Y be
a function and let B be a base for a topology on Y . Suppose that for all
B ∈ B, f−1(B) is open in X . Prove that f is continuous.

Exercise 1.26. Let (X, d) be a metric space. GiveX the topology generated
by d and give R the topology generated by the usual metric. Let x0 ∈ X
and define f : X → R by

f(x) = d(x0, x).

Prove that f is continuous.

The next exercise connects the topological notion of continuity with the
notion of continuity you learned about in Calculus classes.

Exercise 1.27. In analysis courses a function f : R → R is defined to be
continuous at x0 ∈ R if for every ε > 0 there exists δ > 0 such that if
|x − x0| < δ then |f(x) − f(x0)| < ε. The function is continuous if it is
continuous at every point x0 ∈ R.

Give R the usual topology. Prove that f is continuous in the analysis sense
if and only if it is continuous in the sense of Definition 1.23.

Exercise 1.28. (The composition of two continuous functions is continu-
ous) Let (X,X ), (Y,Y), and (Z,Z) be topological spaces. Let f : X → Y
be surjective and continuous. Let g : Y → Z be continuous. Prove that
g ◦ f is continuous.

Definition 1.29. Let X and Y be sets. A function f : X → Y is

(a) injective if for every x1 6= x2 ∈ X f(x1) 6= f(x2)
(b) surjective if for every y ∈ Y there exists x ∈ X such that f(x) = y.
(c) bijective if f is injective and surjective

Recall that if f : X → Y is bijective there exists an inverse function

f−1 : Y → X.

Definition 1.30. Let (X,X ) and (Y,Y) be topological spaces. A function
f : X → Y is a homeomorphism if f is bijective and both f and f−1

are continuous. We say that X and Y are homeomorphic if there exists a
homeomorphism between them.

Exercise 1.31. Suppose that a, b ∈ R and a < b. The metric on R re-
stricts to a metric on the intervals (a, b) and (−π/2, π/2) giving the usual
topologies on those intervals. Show that the open interval (a, b) (with the
usual topology) is homeomorphic to the open interval (−π/2, π/2) (with
the usual topology).
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Exercise 1.32. Give R and (−π/2, π/2) the usual topologies. Explain why

arctan : R→ (−π/2, π/2)

is a homeomorphism. You may use Exercise 1.27 and well-known facts
from Calculus.

Exercise 1.33. Find all sets X such that X with the discrete topology is
homeomorphic to X with the indiscrete topology.

2. CONSTRUCTING TOPOLOGICAL SPACES

2.1. The subspace topology.

Definition 2.1. Let (X,X ) be a topological space and let Y ⊂ X . Define

Y = {U ∩ Y : U ∈ X}.
Y is called the subspace topology on Y .

Exercise 2.2. Prove that the subspace topology is a topology.

Exercise 2.3. Let (X, d) be a metric space and let Y ⊂ X . Notice that d|Y
is a metric on Y . Show that d|Y generates the subspace topology on Y .

2.2. The product topology.

Definition 2.4. Let X and Y be sets. The product X × Y is defined as
the set of all ordered pairs (x, y) such that x ∈ X and Y ∈ Y . For
sets X1, X2, . . . , Xn the product ×Xi is defined to be the set of n-tuples
(x1, x2, . . . , xn) such that xi ∈ Xi. For a countable collection of sets Xi for
i ∈ N, the product ×Xi is defined to be the set of sequences (x1, x2, . . .)
with xi ∈ Xi.

Definition 2.5. Let (X,X ) and (Y,Y) be topological spaces. Let Z =
X × Y . Let

B = {U × V : U ∈ X and V ∈ Y}.
The product topology on Z is the topology generated by B. We will some-
times refer to the sets in B as product open sets.

Exercise 2.6. Explain why B in the definition above is usually not itself a
topology on Z.

Exercise 2.7. Prove that the set of product open sets is a base for the product
topology. Use this to show that if f : Z → X × Y is a function between
topological spaces, with X × Y having the product topology, then f is
continuous if and only if the inverse image of every product open set is
open.
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Exercise 2.8. Let (X,X ), (Y,Y) be topological spaces. Give X × Y and
Y ×X the product topologies. Prove thatX×Y is homeomorphic to Y ×X .

Exercise 2.9. Show that the product topology on R2 = R × R is the same
as the topology generated by the usual metric. (Hint: Use Exercise 1.20.)

Exercise 2.10. Let X and Y be topological spaces and define a function
prX : X × Y → X by prX(x, y) = x. Define prY similarly. Show that the
product topology onX×Y is the smallest topology onX×Y for which prX
and prY are continuous. The functions prX and prY are called projections.

Definition 2.11. Let A be a finite or countably infinite set and let (Xa,Xa)
be a topological space for each a ∈ A. Let Z = ×a∈AXa. Let

B = {×a∈AUa : Ua ∈ Xa and for all but finitely many a, Ua = Xa}.
The product topology on Z is the topology generated by B. In fact, this
definition makes sense for sets A which are uncountable, but we will never
need that notion.

Exercise 2.12. Use the same notation as in Definition 2.11. Prove that the
product topology on Z is the smallest topology for which the projections are
continuous. (The definition of projection in this context should be obvious.)
If you like, you may simply describe how to adapt your proof from Exercise
2.10.

Exercise 2.13. Use the same notation as in Definition 2.11. Suppose that in
the definition of B the requirement that for all but finitely many a, Ua = Xa

is dropped. Compare the topology generated by this revised B with the
product topology.
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Definition 2.14. Here are some simple, but common, topological spaces.

(a) (n–space) Give Rn the product topology. This is called the usual
topology on Rn. It is generated by the usual metric on Rn.

(b) (the n–sphere) Let Sn consist of all unit vectors in Rn+1. Give Sn

the subspace topology coming from the usual topology on Rn+1.
(c) (the n–torus) Let A = {1, . . . , n}. Define T n = ×AS1. Give T n the

product topology arising from the usual topology on S1.
(d) (the n–ball) Let Bn consist of all vectors in Rn+1 of length less than

or equal to 1. Give Bn the subspace topology.
(e) (the n–cube) Let I = [0, 1] ⊂ R with the subspace topology. Let

A = {1, . . . , n} and let In = ×AI . Give In the product topology.

Exercise 2.15. Prove that, for every n, the n–ball is homeomorphic to the
n–cube.

Exercise 2.16. Let N = (1, 0, . . . , 0) ∈ Sn. Let X = Sn\N . Give X
the subspace topology. Prove that X is homeomorphic to Rn. (Hint: use
stereographic projection.)
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2.3. Digression: Equivalence Relations and Groups.

Definition 2.17. Let X be a set and let ∼ be a relation. Then ∼ is an
equivalence relation if and only if for all x, y, z ∈ X

(a) (Reflexive) x ∼ x
(b) (Symmetric) x ∼ y ⇒ y ∼ x
(c) (Transitive) x ∼ y and y ∼ z implies that x ∼ z.

For x ∈ X , [x] = {y ∈ X : x ∼ y}. [x] is called the equivalence class of
X . The notation X/∼ denotes the set of equivalence classes of elements of
X .

Example 2.18. Define an equivalence relation ∼ on Q = Z × (Z − {0})
by (a, b) ∼ (m,n) if and only if an = bm. Then Q/ ∼ has a natural
identification with the rational numbers Q.

Exercise 2.19. (Crushing) LetX be a set and letA ⊂ X . Define an relation
∼ on X by x ∼ y if and only if either x = y or x, y ∈ A. Show that ∼ is an
equivalence relation.

Exercise 2.20. (Gluing) Let X and Y be sets and let A ⊂ X and B ⊂ Y .
Assume that A ∩ B = ∅. Let f : A → B be a function. Define a relation
∼f on X ∪ Y by

(a) For all z ∈ X ∪ Y , z ∼f z
(b) If x, z ∈ A and f(x) = f(z) then x ∼f z.
(c) For all x ∈ A, x ∼f f(x) and f(x) ∼f x.

Prove that ∼f is an equivalence relation. The set (X ∪ Y )/ ∼ is often
denoted by X ∪f Y .

The following few definitions and exercises are a detour from topology into
group theory. We will make use of these facts later in the course.

Definition 2.21. A group (G, ·) is a set G together with a binary operation
· such that the following hold:

(a) (Closure) For all g, h ∈ G, g · h ∈ G
(b) (Associative) For all g, h, k ∈ G, (g · h) · k = g · (h · k)
(c) (Identity) There exists e ∈ G such that for all g ∈ G, g ·e = e·g = g.
(d) (Inverses) For each g ∈ G there exists h ∈ G such that g ·h = h ·g =

e. The element h is usually denoted g−1.

A group is abelian if in addition

(e.) (Commutative) For all g, h ∈ G, g · h = h · g.
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If H ⊂ G, then H is a subgroup of G if H is a group with the same
operation ·. When talking abstractly about an arbitrary group (G, ·) it is
often convenient to write g · h as gh. We will often do this.

Exercise 2.22. Prove that the following are groups. Which are abelian?

(a) (R,+)
(b) (R\{0}, ·)
(c) (Cn, ·) where Cn consists of all complex numbers which are nth

roots of 1. That is, numbers of the form

e2kπi/n for natural numbers k such that 0 ≤ k ≤ n− 1.

This group corresponds to the group of rotations of a regular n–gon
in the complex plane.

(d) 2 × 2 matrices with real entries and non-zero determinant. The op-
eration is matrix multiplication. This group is denoted GL2(R).

(e) Homeo(X) for a topological space X . This is the set of homeo-
morphisms {h : X → X} with group operation the composition of
functions.

Exercise 2.23. (Cosets) Let (G, ·) be a group and letH be a subgroup of G.
Define a relation ∼H on G by g1 ∼ g2 if and only if there exist h1, h2 ∈ H
such that g1h1 = g2h2.

(a) Prove that ∼H is an equivalence relation.

An equivalence class [g] is usually denoted gH . It is called a coset of H in
G. The set G/ ∼H is usually denoted G/H .

(b.) Consider the group (Z,+) and let n ∈ N. Prove that

nZ = {z ∈ Z : there exists m ∈ Z with z = nm}

is a subgroup of Z.
(c.) For n = 5, list all the elements of Z/nZ.

Definition 2.24. If G is a group and if H is a subgroup of G then we say
that H is normal if for all g ∈ G and for all h ∈ H ,

g−1hg ∈ H.

Example 2.25. LetH be a normal subgroup ofG. Define a binary operation
◦ on G/H by

g1H ◦ g2H = (g1g2)H.

Prove that ◦ is well defined and that (G/H, ◦) is a group.
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Proof. To prove that ◦ is well defined, suppose that k1 ∈ g1H and k2 ∈
g2H . We must show that

k1H ◦ k2H = g1H ◦ g2H.

Since equivalence classes partition a set, it is enough to show that (k1k2) ∈
(g1g2)H . Since k1 ∈ g1H , there exists h1 ∈ H so that k1 = g1h1. Similarly,
there exists h2 ∈ H so that k2 = g2h2. Since H is normal in G, there exists
h ∈ H so that g−1

2 h1g2 = h. Thus,

k1k2 = g1h1g2h2 = g1g2(g
−1
2 h1g2)h2 = g1g2(hh2).

Since H is a subgroup hh2 ∈ H . Thus, k1k2 ∈ (g1g2)H . Consequently, ◦
is well defined.

The associativity of ◦ follows immediately from the associativity of · (the
group operation on G). The identity element of G/H is the coset H . The
inverse of gH is g−1H . Hence G/H is a group. �

Definition 2.26. Let G and K be groups and let f : G→ K be a function.
Then f is a homomorphism if for all g1, g2 ∈ G,

f(g1g2) = f(g1)f(g2).

If f is bijective, f is said to be an isomorphism.

Exercise 2.27. Let n ∈ N. Show that the group Cn is isomorphic to the
group Z/nZ. We will often denote any group isomorphic to these groups as
Zn.

Definition 2.28. Let G be a group and let X be a set. An action of G upon
X is a function ∗ : G×X → X such that

(a) If e is the identity element of G, then for all x ∈ X , e ∗ x = x.
(b) For all g, h ∈ G, g ∗ (h ∗ x) = (gh) ∗ x.

If X is a topological space, we will often require, for each g, the map x →
g ∗ x to be continuous. If G is a topological group and if X is a topological
space, we will require ∗ to be a continuous function.

Exercise 2.29. For the following groups G, sets X , and functions ∗, show
that ∗ is an action of G on X .

(a) Let G = Z, X = R, and g ∗ x = g + x.
(b) G = GL2(R) and X = R2. The function ∗ is matrix-vector multi-

plication.
(c) G = Cn and X is a regular n–gon in C centered at the origin and

with one vertex at 1. (The action should rotate X by 2π/n radians.)
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Exercise 2.30. (Quotienting by a group action) Suppose that G is a group
and that X is a set such that ∗ is an action of G on X . Define a relation ∼∗
on X by x ∼∗ y if and only if there exists g ∈ G such that g ∗ x = y. Show
that ∼∗ is an equivalence relation on X . The set of equivalence classes is
often denoted by G\X .

Exercise 2.31. For each of the groups G and sets X in Exercise 2.29 de-
scribe (geometrically or otherwise) the sets G\X .

2.4. The quotient topology.

Definition 2.32. Let (X,X ) be a topological space and let ∼ be an equiva-
lence relation on X . Let f : X → X/∼ be the function f(x) = [x]. Define
a set U ⊂ X/∼ to be open if and only if f−1(U) ∈ X . The set of all open
sets in X/∼ is the quotient topology on X/∼ . The function f is called
the quotient function or quotient map.

Exercise 2.33. Show that the quotient topology is, in fact, a topology.

Exercise 2.34. Show that the quotient topology is the largest topology on
X/∼ for which the quotient function f is continuous.

Definition 2.35. Let X and Y be topological spaces and let f : X → Y be
a function. Then f is open if the image of every open set is open.

Exercise 2.36. Prove that the quotient function is open.

Exercise 2.37. Suppose thatX, Y, Z are topological spaces and that f : X →
Y , g : X → Z, and h : Y → Z are functions such that g = h ◦ f . Sup-
pose that f is an open function and that g is continuous. Prove that h is
continuous.

Exercise 2.38. Consider the set I = [0, 1] with the usual topology. Let A =
{0, 1} and give I/A the quotient topology. Prove that I/A is homeomorphic
to S1.

Notice that you must prove that I/A with the quotient topology is homeo-
morphic to the set of unit vectors in R2 with the subspace topology. Hint:
Consider

g : I → S1 defined by g(t) = (cos(2πt), sin(2πt)).

Show that g gives rise to a well-defined bijection h : I/A → S1. Use
Exercise 2.37 to prove that h is continuous. Finally, you need to show that
h−1 is continuous.

Exercise 2.39. Give I2 = [0, 1]× [0, 1] the usual topology. Define an equiv-
alence relation on I2 by
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• (x, y) ∼ (x, y) for all (x, y) ∈ I2

• (x, 0) ∼ (x, 1) for all x ∈ I
• (0, y) ∼ (1, y) for all y ∈ I .

Prove that I2/∼ with the quotient topology is homeomorphic to T 2.

Exercise 2.40. Use the quotient topology to give more detail or more cer-
tainty to your descriptions in Exercise 2.31.

Exercise 2.41. Let X = Rn\{0}. Say that x1 ∼ x2 if there exists λ > 0
such that x1 = λx2. Prove that ∼ is an equivalence relation and that X/ ∼
with the quotient topology is homeomorphic to Sn−1.

Exercise 2.42. Let X = Rn\{0}. Say that x1 ∼ x2 if there exists a real
number λ 6= 0 such that x1 = λx2. It is a fact that ∼ is an equivalence
relation. Let Pn−1 = X/ ∼ with the quotient topology. Prove that there is a
surjective function f : Sn−1 → Pn−1 such that f is a local homeomorphism.
That is, for each point x ∈ Sn−1 there is an open set U ⊂ Sn−1 such that
f |U is a homeomorphism onto f(U).

Exercise 2.43. Show that S1 and P1 are homeomorphic.

It is a fact that for n > 1, Sn and Pn are not homeomorphic.

Exercise 2.44. Define an action of the group Z2 on the topological space
R2 by

(n,m) ∗ (x, y) = (x+ n, y +m).

Show that Z2\R2 is homeomorphic to T 2.

Definition 2.45. LetX be a topological space. LetXt = X×{t} ⊂ X×I .
Give X × I the quotient topology. The cone of X , denoted SX , is the
space (X × I)/X1. The suspension of X , denoted SX is X/∼ where for
all (x, s), (y, t) ∈ X × I , (x, s) ∼ (x, s) and (x, s) ∼ (y, t) if and only if
s = t = 0 or s = t = 1.

Exercise 2.46. LetX be the n–sphere, Sn. Show that SX is homeomorphic
to Sn+1.

Exercise 2.47. Let X = B2 × {0} and Y = B2 × {1}. Notice that X
and Y are both homeomorphic to B2. Let A = S1 × {0} ⊂ X and B =
S1 × {1} ⊂ Y . Define f : A→ B by f(s, 0) = (s, 1). Prove that Y ∪f X
with the quotient topology is homeomorphic to S2. Generalize, if you can,
this result to higher dimensions.
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3. TOPOLOGICAL PROPERTIES

3.1. Separating points.

Definition 3.1. A topological space (X,X ) is Hausdorff (or T2) if for ev-
ery x, y ∈ X with x 6= y there exist disjoint open sets Ux and Uy containing
x and y respectively.

Exercise 3.2. Prove that every metric space is Hausdorff.

Exercise 3.3. (Line with two origins) Let X = (R\{0}) ∪ {a, b}. Define a
base for a topology on X as follows. Declare the following sets to be open
intervals:

(a) (x, y) such that x < 0 and y ≤ 0
(b) (x, y) such that x ≥ 0 and y > 0
(c) (x, 0) ∪ {a} ∪ (0, y) for x < 0 and y > 0.
(d) (x, 0) ∪ {b} ∪ (0, y) for x < 0 and y > 0.

Let X be the topology on X generated by these open intervals.

(a) Show that (X,X ) is not Hausdorff.
(b) Show that X/{a, b} is homeomorphic to R and is, therefore, Haus-

dorff.

Exercise 3.4. Define an equivalence relation ∼ on R by

x ∼ y ⇔ x− y ∈ Q.
Prove that R/∼ is non-Hausdorff.

3.2. Connectedness.

Definition 3.5. Let (X,X ) be a topological space. X is connected if the
only sets which are both open and closed are X and ∅. Suppose that A ⊂
X is a non-empty set which is both open and closed. If, in the subspace
topology, A is connected then A is a connected component of X .

Exercise 3.6. Prove that (X,X ) is not connected if and only if there exist
nonempty disjoint open sets A,B ⊂ X such that X = A ∪ B. Notice that
A and B are both open and closed.

The next exercise is a very useful tool for proving that certain spaces are or
are not connected.

Exercise 3.7. Let N be a finite set with the discrete topology. Prove that
the number of connected components of a topological space X is at least
|N | if and only if there exists a continuous surjection of X onto N .
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Exercise 3.8. (a) Prove that the Intermediate Value Theorem is equiva-
lent to the statement that every closed, bounded interval [a, b] ⊂ R
is connected

(b) Prove that if X and Y are connected topological spaces then X × Y
is connected.

(c) Prove that if X and Y are homeomorphic topological spaces and if
X is connected then so is Y .

The previous exercise indicates that it might be useful to know that the
Intermediate Value Theorem is true. A proof is given in Section 5. From
now on, you may assume that the Intermediate Value Theorem is true.

Exercise 3.9. Let (X,X ) and (Y,Y) be topological spaces. Prove that if
(X,X ) is connected and if there exists a surjective continuous function from
X to Y then Y is connected. Conclude that if X is connected and if ∼ is an
equivalence relation on X then X/∼ is connected.

Exercise 3.10. Prove that S1 and T n for n ≥ 2 are connected.

Definition 3.11. Let (X,X ) be a topological space. A path in X is a con-
tinuous function p : I → X . We say that p is a path from p(0) to p(1). A
space (X,X ) is path-connected if for all x, y ∈ X there exists a path from
x to y.

Exercise 3.12. Prove that if X is path-connected then it is connected.

Exercise 3.13. (a) Prove that Rn is connected for n ≥ 1.
(b) Let y ∈ Rn for some n ≥ 2. Prove that Rn − {y} is connected (in

the subspace topology).
(c) Let x ∈ R. Prove that R − {x} is not connected (in the subspace

topology).

Exercise 3.14. Let (X,X ) and (Y,Y) be topological spaces. Prove the
following.

(a) Suppose that f : X → Y is a homeomorphism. Let x ∈ X . Give
X−{x} and Y−{f(x)} the subspace topologies. Prove thatX−{x}
is homeomorphic to Y − {f(x)}.

(b) Prove that R is not homeomorphic to Rn for n ≥ 2.
(c) Prove that I is not homeomorphic to (0, 1).
(d) Prove that I is not homeomorphic to S1.
(e) Prove that the comb space (Exercise 1.15) is not homeomorphic to

the upper half space with the usual topology.

Definition 3.15. (X,X ) is locally connected if for each point x ∈ X and
each open set U ⊂ X such that x ∈ U , there exists an open set V ⊂ U such
that x ∈ V and V is connected (with the subspace topology).
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Exercise 3.16. (The topologists’ sine curve) Let S be the graph of y =
sin(1/x) for x > 0 in R2. Let

J = {(0, y) ∈ R2 : 0 ≤ y ≤ 1}
Define Γ = S ∪ J . Γ (with the subspace topology) is the topologists’ sine
curve.

(a) Show that Γ is connected.
(b) Show that Γ is not locally connected.
(c) Show that Γ is not path-connected.
(d) Modify the construction of Γ to produce an example of a space

which is path connected but not locally connected.
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3.3. Covers and Compactness.

Definition 3.17. Let (X,X ) be a topological space. A cover of X is a
collection of sets {Uα : α ∈ A} (for some indexing set A) such that ∪Uα =
X . If all the sets Uα are open, it is an open cover. If they are all closed, it
is a closed cover. A subcover is a subset of {Uα : α ∈ A} which is also a
cover of X .

Warning: In algebraic topology the term “cover” has a completely different
meaning.

Definition 3.18. A topological space (X,X ) is second countable if and
only if there is a countable base for the topology.

Exercise 3.19. Show that a metric space (X, d) is second countable if every
open cover has a countable subcover.

Definition 3.20. Let (X,X ) be a topological space. X is compact if every
open cover of X has a finite subcover.

Exercise 3.21. Prove that if a topological space has a finite number of points
then it is compact.

Exercise 3.22. Prove that Rn is not compact for n ≥ 1.

Exercise 3.23. Let (X,X ) be a Hausdorff topological space and suppose
that A ⊂ X is a compact subspace. Prove that A is closed.

Exercise 3.24. Let X and Y be topological spaces. Suppose that X is
compact and f : X → Y is continuous. Show that f(X) is compact (with
the subspace topology in Y ).

Exercise 3.25. Prove that if A ⊂ X is closed and if X is compact, then A
is compact.

Exercise 3.26. Prove that if X is compact and if Y is Hausdorff and if
f : X → Y is a continuous bijection then f is a homeomorphism.

The next two theorems are extremely important. The first is proven in Sec-
tion 3.4 and the second in Section 5.

Theorem 3.27. If X and Y are compact topological spaces then X × Y
(with the product topology) is compact.

Theorem 3.28. The interval [0, 1] ⊂ R is compact.

Exercise 3.29. Prove that if X1, . . . , Xn are compact topological spaces,
then ×ni=1Xi is compact.
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Tychonoff’s theorem states that the product of an infinite number of com-
pact topological spaces is also compact. Tychonoff’s theorem is much
harder to prove than the previous exercise.

Definition 3.30. Suppose that (X, d) is a metric space and that A ⊂ X .
ThenA is bounded if there existsN such that for all x, y ∈ A, d(x, y) ≤ N .

Exercise 3.31. Suppose thatA is a bounded subset of a metric space (X, d).
Prove that for all x0 ∈ X , there exists r > 0 such that A ⊂ Br(x0).

Exercise 3.32. (Heine-Borel Theorem) Suppose that X ⊂ Rn is a closed
and bounded subset. Then X is compact (with the subspace topology).

Exercise 3.33. (Extreme Value Theorem) Let X be a compact topological
space and suppose that f : X → R is continuous. Then there is x ∈ X such
that for all y ∈ X , f(x) ≥ f(y). The number f(x) is the global maximum
of f . Similarly, show that f attains its global minimum.

Exercise 3.34. Prove that Sn is compact. Use this to show that, at a fixed
moment in time, someplace on earth has a temperature that is equal to or
larger than the temperature at every other place on earth.

Exercise 3.35. Prove that Sn and Rm are not homeomorphic for any n,m ≥
0.

Exercise 3.36. Suppose that X is a Hausdorff space with infinitely many
points. Let x ∈ X . Prove that X\{x} is not compact.

3.4. Compactness of the product of two compact topological spaces.

Definition 3.37. If Z and Y are compact topological spaces and if f : Z →
Y is a function then f is proper, if for each compact set C ⊂ Y , f−1(C) is
compact. The function f is open, if for each open set U ⊂ Z, the set f(U)
is open in Y .

Lemma 3.38. Suppose thatZ and Y are topological spaces and that f : Z →
Y is an open function. Suppose that for each y ∈ Y , f−1(y) is compact in
X . Then f is a proper function.

Proof. Let C ⊂ Y be compact. We wish to show that f−1(C) is compact
in Z. Let {Uα : α ∈ A} be an open cover, with A an index set. For
each y ∈ C, f−1(y) is compact. Let Ay ⊂ A be a finite subset so that
{Uα : α ∈ Ay} is a finite cover of f−1(y). Since each Uα is open, the set

Wy =
⋃
α∈Ay

Uα

is open in Z.
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Since f is an open function, the image of a closed set is closed. Hence,
f(Z −Wy) is a closed set in Y . Thus,

Vy = Y − f(Z −Wy)

is an open set in Y .

Claim: For each y ∈ C, y ∈ Vy. Suppose that y is not in Vy. Then y ∈
f(Z−Wy). This means that there exists z ∈ f−1(y) such that z ∈ Z−Wy.
However, there exists α ∈ Ay so that z ∈ Uα. Furthermore, this Uα is a
subset of Wy. So z ∈ Uα ⊂ Wy. This means that z is not in Z −Wy, a
contradiction.

Hence, {Vy} is an open cover of the compact set C. Thus, there exist points
y1, . . . , yn ∈ C so that {Vyi

: 1 ≤ i ≤ n} is a finite open cover of C.

Claim: For each yi, f−1(Vyi
) ⊂ Wyi

. Suppose that z ∈ f−1(Vyi
). Then,

f(z) ∈ Y − f(Z − Wy). Hence z is not in Z − Wy which means that
z ∈ Wy. �

Since C ⊂
⋃
Vyi

, we have

f−1(C) ⊂
n⋃
i=1

f−1(Vyi
) ⊂

n⋃
i=1

Wyi
=

n⋃
i=1

⋃
α∈Ayi

Uα.

Thus,
{Uα : there exists 1 ≤ i ≤ n so thatα ∈ Ayi

}.
This is a finite subset of {Uα : α ∈ A} and it covers f−1(C), so f−1(C) is
compact and f is proper. �

Lemma 3.39. Let X and Y be topological spaces. Then the projection
πY : X × Y → Y is an open function.

Proof. LetW ⊂ X×Y be an open set. Since products of open sets fromX
and Y form a basis of the product topology, there exist open sets Uα ⊂ X
and Vα ⊂ Y for α in some index set A so that W =

⋃
Uα × Vα. Then,

πY (W ) = πY (
⋃

Uα × Vα) =
⋃

πY (Uα × Vα) =
⋃

Vα

This last set is open in Y . �

Lemma 3.40. Suppose that X and Y are topological spaces and that X is
compact. Then for each y ∈ Y , π−1

Y (y) ⊂ X × Y is compact.

Proof. For each y ∈ Y ,

π−1
Y (y) = X × {y}

This is homeomorphic to X and so is compact. �
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Theorem 3.27. Suppose that X and Y are compact topological spaces.
Then X × Y is compact.

Proof. The projection πY : X × Y → Y is open and the inverse image of
a point in Y is compact. Thus, by Lemma 3.38, πY is proper. Since Y is
compact, π−1

Y (Y ) = X × Y is compact. �

4. SEQUENCES

Definition 4.1. A sequence in a set X is a function f : N → X where N
is an infinite subset of N. We often write xi instead of f(i) and (xi : i ∈ N)
for f . If N = N, we will write (xi)i.

Warning: Confusing the sequence (xi)i which is a function with the set
{xi}i ⊂ X can lead to trouble. However, the difference is often obscured
in practice.

Definition 4.2. Suppose that (xi : i ∈ N) is a sequence in a set X . If N ′ is
an infinite subset of N , then the sequence (xi : i ∈ N ′) is a subsequence
of (xi : i ∈ N).

Definition 4.3. Let x = (xi : i ∈ N) be a sequence in a topological space
X . A point l ∈ X is a limit of x if for every open set U containing l there
is an M ∈ N such that for every n ≥M , xn ∈ U . We say that x converges
to l. A sequence x is convergent if there exists a limit for x.

Exercise 4.4. (a) Prove that if X has the indiscrete topology then every
point of X is a limit of every sequence in X .

(b) Prove that if X has the discrete topology then the only sequences
that have limits are sequences which are either finite or eventually
constant.

(c) Prove that if a sequence in a Hausdorff space has a limit point then
that limit point is unique.

Definition 4.5. Let X be a topological space and let A ⊂ X . A limit point
of A is a point x ∈ X such that for every open set containing x, U ∩ A
contains a point other than x.

Exercise 4.6. Suppose that (xi : i ∈ N) is a sequence in a metric space
(X, d). Determine necessary and sufficient conditions for a point l to be
both a limit of the sequence (xi : i ∈ N) and a limit point of the set
{xi : i ∈ N}.

Exercise 4.7. Let X be a metric space and A ⊂ X .
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(a) Suppose that l is a limit point ofA. Prove that there exists a sequence
x = {xi : i ∈ N} in A such that l is a limit of x.

(b) Suppose that x is a sequence in A which converges to a point l ∈ X .
Prove that either l is a limit point of A or that the sequence x is
eventually constant. (That is, there exists M ∈ N such that for all
n ≥M , xm = l.)

Definition 4.8. Let X be a metric space and suppose A ⊂ X . Let A be the
union of A and the set of its limit points. A is called the closure of A in X .
Notice that it depends not only on A but also on X .

Exercise 4.9. Let X be a metric space and let A ⊂ X .

(a) Prove that A is a closed set.
(b) Prove that A is the smallest closed set containing A. That is, if

A ⊂ V ⊂ X and if V is closed, then A ⊂ V .
(c) Prove that ifA ⊂ X is closed and if l is a limit point ofA then l ∈ A.

(That is, then A = A.)
(d) (Challenging!) Do this exercise again, but with the hypothesis that

X is a metric space replaced with the hypothesis that X is a Haus-
dorff space.

Definition 4.10. A function f : X → Y is said to be sequentially contin-
uous if whenever a sequence (xi : i ∈ N) in X converges to L ∈ X , the
sequence (f(xi) : i ∈ N) in Y converges to f(L) ∈ Y .

Exercise 4.11. LetX and Y be metric spaces and let f : X → Y be a func-
tion. Prove that f is continuous if and only if it is sequentially continuous.

Definition 4.12. A space (X,X ) is sequentially compact if every sequence
in X contains a convergent subsequence.

Exercise 4.13. Prove that if a metric space is compact then it is sequentially
compact.

Definition 4.14. Let (X, d) be a metric space and let {xi} ⊂ X be a se-
quence. Suppose that for every ε > 0 there exists N ∈ N such that for all
n,m ≥ N , d(xn, xm) < ε. Then the sequence {xi} is a Cauchy sequence.
If every Cauchy sequence in X converges then (X, d) is a complete metric
space.

Exercise 4.15. (a) Prove that if (X, d) is a compact metric space then
(X, d) is complete.

(b) Give an example of a metric space which is complete but noncom-
pact.
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Definition 4.16. If A ⊂ X is a subset of a metric space (X, d), then the
diameter of A is

diam(A) = sup{d(p, q) : p, q ∈ A}

Exercise 4.17. Prove that a compact subset of a metric space has finite
diameter.

Exercise 4.18. Give an example of two homeomorphic metric spaces such
that one of them has finite diameter and the other infinite diameter.

Exercise 4.19. (Lebesgue Covering Lemma1) Let (X, d) be a compact met-
ric space and let {Uα} be an open covering of X . Then there exists δ > 0
such that for each set A ⊂ X with diam(A) < δ there exists α such that
A ⊂ Uα. The number δ is the Lebesgue number for {Uα}.

Exercise 4.20. (Contraction maps2) Let (X, d) be a complete metric space.
Let f : X → X . Suppose that there exists 0 ≤ λ < 1 such that for every
x, y ∈ X ,

d(f(x), f(y)) ≤ λd(x, y).

Prove that there is a unique x ∈ X such that f(x) = x. The point x is called
a fixed point of f .

5. CONNECTEDNESS AND COMPACTNESS OF INTERVALS

Definition 5.1. Suppose that A ⊂ R. An upper bound for A is a number
β such that for all a ∈ A, a ≤ β. The least upper bound or supremum of
A is an upper bound β for A such that if β′ is any other upper bound for A
then β ≤ β′. We write supA = β if β exists. If A has no upper bound we
write supA =∞.

A lower bound for A is a number α such that for all a ∈ A, α ≤ a. The
greatest lower bound or infimum of A is a lower bound α for A such that
if α′ is an other lower bound for A then α′ ≤ α. We write inf A = α if α
exists. If A has no lower bound we write inf A = −∞.

The theory of real numbers, usually covered in an analysis class, guarantees
that if A is non-empty and has an upper bound then supA exists and if A is
non-empty and has a lower bound then inf A exists.

Lemma 5.2. Suppose that A ⊂ R is a non-empty bounded set. If A is
closed then supA ∈ A and inf A ∈ A.

1The statement comes from Bredon’s Topology and Geometry
2Taken from Browder’s Mathematical Analysis
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Theorem 3.28. The interval [0, 1] is compact.

Proof. Let U be an open cover of [0, 1]. Define

S = {s ∈ [0, 1] : there is a finite subset of U which covers [0, s]}.
Let b be the least upper bound for S.

Claim : S = [0, b) or S = [0, b]
To see this, suppose that s ∈ S. Let U ′ be a finite subset of U which covers
[0, s]. Then for all s′ < s, U ′ also covers [0, s′]. Hence, if s ∈ S, then
[0, s] ⊂ S. �

Claim: S = [0, b].
Suppose not; that is, suppose that S = [0, b). Since U is an open cover of
[0, 1], there exists an open set U ∈ U so that b ∈ U . Since U is an open set
in [0, 1], there exists ε > 0 so that the interval (b − ε, b] is a subset of U .
Since b is the least upper bound for S, the number b− ε/2 is contained in S.
Let U ′ be a finite subset of U which covers [0, b− ε/2]. Then U ′ ∪ {U} is a
finite subset of U ′ which covers [0, b]. Hence, b ∈ S and so, S = [0, b]. �

Claim: S = [0, 1]. Suppose not. That is, suppose that b < 1. Let U ′ be a
finite subset of U which covers S = [0, b]. Since each set of U is open in
[0, 1], there exists a set U ∈ U so that b ∈ U . Since U is open and since
b < 1, there exists ε > 0 so that (b, b + ε) ⊂ U . Thus, U ′ is a finite subset
of U which covers [0, b + ε/2]. This implies that b + ε/2 ∈ S. But, b is the
least upperbound for S and so this is impossible. �

Thus, [0, 1] is compact. �

Intermediate Value Theorem. Let [a, b] ⊂ R and suppose that f : [a, b]→
R is a continuous function such that f(a) 6= f(b). If y is between f(a) and
f(b) then there exists β ∈ [a, b] so that f(β) = y.

Proof. To begin, assume that f(a) < y < f(b). Let A = f−1([f(a), y]).
Since a ∈ A, A is a bounded, non-empty set. Hence, β = supA exists.
Since [f(a), y] is closed, and f is continuous, A is closed. By Lemma 5.2,
β ∈ A. This implies that f(β) ≤ y. Since b 6∈ A and since β = supA, the
interval J = (β, b) is a non-empty open interval disjoint from A. Then the
sequence, xn = β + 1/n is a sequence of points not in A converging to β.
Since xn 6∈ A, f(xn) > y for all n. Since f is continuous, f(xn) converges
to f(β). Thus, f(xn) > y for all n implies that f(β) ≥ y. Consequently,
f(β) = y.

The case when f(b) < y < f(a) is similar and we omit the proof. �


