
Point-Set Topology

1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS

Definition 1.1. Let X be a set and T a subset of the power set P(X) of X .
Then T is a topology on X if and only if all of the following hold

(a) ∅ ∈ T
(b) X ∈ T
(c) (Arbitrary unions) If Aα ∈ T for α in some index set I then⋃

α∈I

Aα ∈ T .

(d) (Finite intersections) If Bβ ∈ T for β in some finite set I then⋂
β∈I

Bβ ∈ T .

If T is a topology on X , then (X, T ) is a topological space. Sometimes, if
T is understood we say that X is a topological space. If U ∈ T then U is
an open set. If V ⊂ X and X\V is open, then V is closed. Notice that in
any topological space (X, T ), both X and ∅ are sets which are both open
and closed. It is possible for a set to be neither open nor closed.

Exercise 1.2. Show that the Finite intersections axiom is equivalent to:

• If A,B ∈ T then A ∩B ∈ T .

Exercise 1.3. Let X be any set. Prove that the following are topologies on
X

(a) (the discrete topology) T = P(X)
(b) (the indiscrete topology) T = {∅, X}

Exercise 1.4. LetX = {a, b, c, d}. Find all topologies onX containing five
or fewer sets and prove that your list is complete.

Exercise 1.5. Let (X,X ) be a topological space. Prove that a set U ⊂ X
is open if and only if for all x ∈ U there exists an open set Ux such that
x ∈ Ux and Ux ⊂ U .

1



2

Definition 1.6. Let (X, T ) be a topological space. A set B ⊂ T is a base
for T if each element of T can be written as the union of elements of B.

Definition 1.7. Let X be a set and let B ⊂ P(X). Let T be the smallest
topology on X containing B. That is, B ⊂ T and if T ′ is a topology on X
such that B ⊂ T ′ then T ⊂ T ′. We say that B generates the topology T .

Exercise 1.8. Let X be a set and let B ⊂ P(X). Prove that the topology
generated by B exists.

Exercise 1.9. Let X = R and let B consist of all intervals in R of the
form (a, b) with a < b. Let T be the topology generated by B. T is called
the usual topology on R. You do not need to give completely rigourous
answers to the following questions.

(a) Describe the sets in T .
(b) Give an example of a set in R which is neither open nor closed.

Definition 1.10. Let X be a set and let d : X ×X → R be a function such
that

(a) (Positive) For all x, y ∈ X , d(x, y) ≥ 0
(b) (Definite) d(x, y) = 0 if and only if x = y.
(c) (Symmetric) For all x, y, d(x, y) = d(y, x).
(d) (Triangle inequality) For all x, y, z ∈ R, d(x, z) ≤ d(x, y) + d(y, z)

The function d is a metric on X and (X, d) is a metric space.

Exercise 1.11. Prove that the following are metrics on R.

(a) (the usual metric) d(x, y) = |x− y|
(b) (the discrete metric) d(x, y) = 1 if x 6= y and d(x, y) = 0 if x = y.

Exercise 1.12. Prove that the following are metrics on Rn. In each ||x|| de-
notes the length of the vector x ∈ Rn. Also, let xi denote the ith component
of x.

(a) (the usual metric) d(x, y) =
√∑

i(xi − yi)2

(b) (the sup metric) d(x, y) = maxi{|xi − yi|}
(c) (the taxicab metric) d(x, y) =

∑
i |xi − yi|

Exercise 1.13. (The comb metric) Let X = {(x1, x2) ∈ R2 : x2 ≥ 0}.
Consider the following function d : X ×X → R:

d((x1, x2), (y1, y2)) =

{
0 if (x1, x2) = (y1, y2)

|x2 − y2| if x1 = y1

|x2|+ |y2|+ |x1 − y1| if x1 6= y1

Prove that d is a metric and describe the shortest path between two points
in X .
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Definition 1.14. Let (X, d) be a metric space. For x ∈ X and ε > 0 let

Bε(x) = {y ∈ X : d(x, y) < ε}.
Let T be the topology generated by

{Bε(x) : x ∈ X and ε > 0}.
We say that d generates the topology T .

Exercise 1.15. Let T be the topology generated by d. Show that the metric
balls Bε(x) are a base for T .

Exercise 1.16. Prove that the usual metric on R generates the usual topol-
ogy on R.

Exercise 1.17. Prove that the usual metric, the sup metric, and the taxicab
metric all generate the same topology of Rn.

Exercise 1.18. The usual metric on R2 restricts to be a metric on the closed
upper half space of R2 (i.e. {(x, y) : y ≥ 0}). Does the usual metric on
the closed upper half space generate the same topology as the comb metric?
(See Exercise 1.13.)

Definition 1.19. Let (X,X ) and (Y,Y) be topological spaces. Let f : X →
Y be a function. If U ⊂ Y , let

f−1(U) = {x ∈ X : f(x) ∈ U}.
Define f to be continuous if and only if for every open set U ⊂ Y the set
f−1(U) is open in X .

Exercise 1.20. Let (X,X ) and (Y,Y) be topological spaces and let f : X →
Y be a function.

(a) Suppose that there exists c ∈ Y such that f(x) = c for all x ∈ X .
(That is, f is a constant function.) Prove that f is continuous.

(b) Suppose that X is the discrete topology. Prove that f is continuous.
(c) Suppose thatY is the indiscrete topology. Prove that f is continuous.

Exercise 1.21. In analysis courses a function f : R → R is defined to be
continuous at x0 ∈ R if for every ε > 0 there exists δ > 0 such that if
|x − x0| < δ then |f(x) − f(x0)| < ε. The function is continuous if it is
continuous at every point x0 ∈ R.

Prove that if R has the usual topology, f is continuous in the analysis sense
if and only if it is continuous in the sense of Definition 1.19.

Exercise 1.22. (The composition of two continuous functions is continu-
ous) Let (X,X ), (Y,Y), and (Z,Z) be topological spaces. Let f : X → Y
be surjective and continuous. Let g : Y → Z be continuous. Prove that
g ◦ f is continuous.
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Definition 1.23. Let X and Y be sets. A function f : X → Y is

(a) injective if for every x1 6= x2 ∈ X f(x1) 6= f(x2)
(b) surjective if for every y ∈ Y there exists x ∈ X such that f(x) = y.
(c) bijective if f is injective and surjective

Recall that if f : X → Y is bijective there exists an inverse function

f−1 : Y → X.

Definition 1.24. Let (X,X ) and (Y,Y) be topological spaces. A function
f : X → Y is a homeomorphism if f is bijective and both f and f−1

are continuous. We say that X and Y are homeomorphic if there exists a
homeomorphism between them.

Exercise 1.25. Let R have the usual topology. Let a < b and let I =
(a, b) ⊂ R. The usual metric on R restricts to a metric on I . Give I the
topology generated by this metric. Show that R and I (with these topolo-
gies) are homeomorphic.

Exercise 1.26. Find all sets X such that X with the discrete topology is
homeomorphic to X with the indiscrete topology.

2. CONSTRUCTING TOPOLOGICAL SPACES

2.1. The subspace topology.

Definition 2.1. Let (X,X ) be a topological space and let Y ⊂ X . Define

Y = {U ∩ Y : U ∈ X}.

Y is called the subspace topology on Y .

Exercise 2.2. Prove that the subspace topology is a topology.

Exercise 2.3. Let (X, d) be a metric space and let Y ⊂ X . Notice that d|Y
is a metric on Y . Show that d|Y generates the subspace topology on Y .

2.2. The product topology.

Definition 2.4. Let X and Y be sets. The product X × Y is defined as
the set of all ordered pairs (x, y) such that x ∈ X and Y ∈ Y . For
sets X1, X2, . . . , Xn the product ×Xi is defined to be the set of n-tuples
(x1, x2, . . . , xn) such that xi ∈ Xi. For a countable collection of sets Xi for
i ∈ N, the product ×Xi is defined to be the set of sequences (x1, x2, . . .)
with xi ∈ Xi.
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Definition 2.5. Let (X,X ) and (Y,Y) be topological spaces. Let Z =
X × Y . Let

B = {U × V : U ∈ X and V ∈ Y}.
The product topology on Z is the topology generated by B.

Exercise 2.6. Explain why B in the definition above is usually not itself a
topology on Z.

Exercise 2.7. Let (X,X ), (Y,Y) be topological spaces. Give X × Y and
Y ×X the product topologies. Prove thatX×Y is homeomorphic to Y ×X .

Exercise 2.8. Show that the product topology on R2 = R × R is the same
as the topology generated by the usual metric. (Hint: Use Exercise 1.17.)

Exercise 2.9. Let X and Y be topological spaces and define a function
prX : X × Y → X by prX(x, y) = x. Define prY similarly. Show that the
product topology onX×Y is the smallest topology onX×Y for which prX
and prY are continuous. The functions prX and prY are called projections.

Definition 2.10. Let A be a finite or countably infinite set and let (Xa,Xa)
be a topological space for each a ∈ A. Let Z = ×a∈AXa. Let

B = {×a∈AUa : Ua ∈ Xa and for all but finitely many a, Ua = Xa}.
The product topology on Z is the topology generated by B. In fact, this
definition makes sense for sets A which are uncountable, but we will never
need that notion.

Exercise 2.11. Use the same notation as in Definition 2.10. Prove that the
product topology on Z is the smallest topology for which the projections are
continuous. (The definition of projection in this context should be obvious.)
If you like, you may simply describe how to adapt your proof from Exercise
2.9.

Exercise 2.12. Use the same notation as in Definition 2.10. Suppose that in
the definition of B the requirement that for all but finitely many a, Ua = Xa

is dropped. Compare the topology generated by this revised B with the
product topology.
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Definition 2.13. Here are some simple, but common, topological spaces.

(a) (n–space) Give Rn the product topology. This is called the usual
topology on Rn. It is generated by the usual metric on Rn.

(b) (the n–sphere) Let Sn consist of all unit vectors in Rn+1. Give Sn

the subspace topology coming from the usual topology on Rn+1.
(c) (the n–torus) Let A = {1, . . . , n}. Define T n = ×AS1. Give T n the

product topology arising from the usual topology on S1.
(d) (the n–ball) Let Bn consist of all vectors in Rn+1 of length less than

or equal to 1. Give Bn the subspace topology.
(e) (the n–cube) Let I = [0, 1] ⊂ R with the subspace topology. Let

A = {1, . . . , n} and let In = ×AI . Give In the product topology.

Exercise 2.14. Prove that, for every n, the n–ball is homeomorphic to the
n–cube.

Exercise 2.15. Let N = (1, 0, . . . , 0) ∈ Sn. Let X = Sn\N . Give X
the subspace topology. Prove that X is homeomorphic to Rn. (Hint: use
stereographic projection.)
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2.3. The quotient topology.

Definition 2.16. Let X be a set and let ∼ be a relation. Then ∼ is an
equivalence relation if and only if for all x, y, z ∈ X

(a) (Reflexive) x ∼ x
(b) (Symmetric) x ∼ y ⇒ y ∼ x
(c) (Transitive) x ∼ y and y ∼ z implies that x ∼ z.

For x ∈ X , [x] = {y ∈ X : x ∼ y}. [x] is called the equivalence class of
X . The notation X/ ∼ denotes the set of equivalence classes of elements
of X .

Exercise 2.17. (Crushing) LetX be a set and letA ⊂ X . Define an relation
∼ on X by x ∼ y if and only if either x = y or x, y ∈ A. Show that ∼ is an
equivalence relation.

Exercise 2.18. (Gluing) Let X and Y be sets and let A ⊂ X and B ⊂ Y .
Assume that A ∩ B = ∅. Let f : A → B be a function. Define a relation
∼f on X ∪ Y by

(a) For all z ∈ X ∪ Y , z ∼f z
(b) If x, z ∈ A and f(x) = f(z) then x ∼f z.
(c) For all x ∈ A, x ∼f f(x) and f(x) ∼f x.

Prove that ∼f is an equivalence relation. The set (X ∪ Y )/ ∼ is often
denoted by X ∪f Y .

The following few definitions and exercises are a detour from topology into
group theory. We will make use of these facts later in the course.

Definition 2.19. A group (G, ·) is a set G together with a binary operation
· such that the following hold:

(a) (Closure) For all g, h ∈ G, g · h ∈ G
(b) (Associative) For all g, h, k ∈ G, (g · h) · k = g · (h · k)
(c) (Identity) There exists e ∈ G such that for all g ∈ G, g ·e = e·g = g.
(d) (Inverses) For each g ∈ G there exists h ∈ G such that g ·h = h ·g =

e. The element h is usually denoted g−1.

A group is abelian if in addition

(e.) (Commutative) For all g, h ∈ G, g · h = h · g.

Exercise 2.20. Prove that the following are groups. Which are abelian?

(a) (R,+)
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(b) (R\{0}, ·)
(c) (Cn, ·) where Cn consists of all complex numbers which are nth

roots of 1. That is, numbers of the form

e2kπi/n for natural numbers k such that 0 ≤ k ≤ n− 1.

This group corresponds to the group of rotations of a regular n–gon
in the complex plane.

(d) 2 × 2 matrices with real entries and non-zero determinant. The op-
eration is matrix multiplication. This group is denoted GL2(R).

(e) Homeo(X) for a topological space X . This is the set of homeo-
morphisms {h : X → X} with group operation the composition of
functions.

Definition 2.21. Let (G, ·) be a group and let H ⊂ G. Then H is a sub-
group of G if (H, ·) is a group.

Exercise 2.22. (Quotient Groups) Let (G, ·) be a group and let H be a
subgroup of G. Define a relation ∼H on G by g1 ∼ g2 if and only if there
exist h1, h2 ∈ H such that g1h1 = g2h2.

(a) Prove that ∼H is an equivalence relation.

An equivalence class [g] is usually denoted gH . The set G/ ∼H is usually
denoted G/H .

(b.) Consider the group (Z,+) and let n ∈ N. Prove that

nZ = {z ∈ Z : there exists m ∈ Z with z = nm}

is a subgroup of Z.
(c.) For n = 5, list all the elements of Z/nZ.

When talking abstractly about an arbitrary group (G, ·) it is often convenient
to write g · h as gh. We will often do this.

Definition. If G is a group and if H is a subgroup of G then we say that H
is normal if for all g ∈ G and for all h ∈ H ,

g−1hg ∈ H.

Exercise. Let H be a normal subgroup of G. Define a binary operation ◦
on G/H by

g1H ◦ g2H = (g1g2)H.

Prove that ◦ is well defined and that (G/H, ◦) is a group.
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Proof. To prove that ◦ is well defined, suppose that k1 ∈ g1H and k2 ∈
g2H . We must show that

k1H ◦ k2H = g1H ◦ g2H.

Since equivalence classes partition a set, it is enough to show that (k1k2) ∈
(g1g2)H . Since k1 ∈ g1H , there exists h1 ∈ H so that k1 = g1h1. Similarly,
there exists h2 ∈ H so that k2 = g2h2. Since H is normal in G, there exists
h ∈ H so that g−1

2 h1g2 = h. Thus,

k1k2 = g1h1g2h2 = g1g2(g
−1
2 h1g2)h2 = g1g2(hh2).

Since H is a subgroup hh2 ∈ H . Thus, k1k2 ∈ (g1g2)H . Consequently, ◦
is well defined.

The associativity of ◦ follows immediately from the associativity of · (the
group operation on G). The identity element of G/H is the coset H . The
inverse of gH is g−1H . Hence G/H is a group. �

Definition 2.23. Let G and K be groups and let f : G→ H be a function.
Then f is a homomorphism if for all g1, g2 ∈ G,

f(g1g2) = f(g1)f(g2).

If f is bijective, f is said to be an isomorphism.

Exercise 2.24. Let n ∈ N. Show that the group Cn is isomorphic to the
group Z/nZ. We will often denote any group isomorphic to these groups as
Zn.

Definition 2.25. Let G be a group and let X be a set. A action of G upon
X is a function ∗ : G×X → X such that

(a) If e is the identity element of G, then for all x ∈ X , e ∗ x = x.
(b) For all g, h ∈ G, g ∗ (h ∗ x) = (gh) ∗ x.

If X is a topological space, we will often require, for each g, the map x →
gx to be continuous. If G is a topological group and if X is a topological
space, we will require ∗ to be a continuous function.

Exercise 2.26. For the following groups G, sets X , and functions ∗, show
that ∗ is an action of G on X .

(a) Let G = Z, X = R, and g ∗ x = g + x.
(b) G = GL2(R) and X = R2. The function ∗ is matrix-vector multi-

plication.
(c) G = Cn and X is a regular n–gon in C centered at the origin and

with one vertex at 1. (The action should rotate X by 2π/n radians.)
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Exercise 2.27. (Quotienting by a group action) Suppose that G is a group
and that X is a set such that ∗ is an action of G on X . Define a relation ∼∗
on X by x ∼∗ y if and only if there exists g ∈ G such that g ∗ x = y. Show
that ∼∗ is an equivalence relation on X . The set of equivalence classes is
often denoted by G\X .

Exercise 2.28. For each of the groups G and sets X in Exercise 2.26 de-
scribe (geometrically or otherwise) the sets G\X .

Definition 2.29. Let (X,X ) be a topological space and let∼ be an equiva-
lence relation on X . Let f : X → X/∼ be the function f(x) = [x]. Define
a set U ⊂ X/∼ to be open if and only if f−1(U) ∈ X . The set of all open
sets in X/∼ is the quotient topology on X/∼ .

Exercise 2.30. Show that the quotient topology is, in fact, a topology.

Exercise 2.31. Show that the quotient topology is the largest topology on
X/∼ for which the quotient function f is continuous.

Exercise 2.32. Consider the set I = [0, 1] with the usual topology. Let A =
{0, 1} and give I/A the quotient topology. Prove that I/A is homeomorphic
to S1.

Exercise 2.33. Give I2 = [0, 1]× [0, 1] the usual topology. Define an equiv-
alence relation on I2 by

• (x, y) ∼ (x, y) for all (x, y) ∈ I2

• (x, 0) ∼ (x, 1) for all x ∈ I
• (0, y) ∼ (1, y) for all y ∈ I .

Prove that I2/∼ with the quotient topology is homeomorphic to T 2.

Exercise 2.34. Use the quotient topology to give more detail or more cer-
tainty to your descriptions in Exercise 2.28.

Exercise 2.35. Let X = Rn\{0}. Say that x1 ∼ x2 if there exists λ > 0
such that x1 = λx2. Prove that ∼ is an equivalence relation and that X/ ∼
with the quotient topology is homeomorphic to Sn−1.

Exercise 2.36. Let X = Rn\{0}. Say that x1 ∼ x2 if there exists a real
number λ 6= 0 such that x1 = λx2. It is a fact that ∼ is an equivalence
relation. Let Pn−1 = X/ ∼ with the quotient topology. Prove that there is a
surjective function f : Sn−1 → Pn−1 such that f is a local homeomorphism.
That is, for each point x ∈ Sn−1 there is an open set U ⊂ Sn−1 such that
f |U is a homeomorphism onto f(U).

Exercise 2.37. Show that S1 and P1 are homeomorphic.
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It is a fact that for n > 1, Sn and Pn are not homeomorphic.

Exercise 2.38. Define an action of the group Z2 on the topological space
R2 by

(n,m) ∗ (x, y) = (x+ n, y +m).

Show that Z2\R2 is homeomorphic to T 2.

Exercise 2.39. Let X = B2 × {0} and Y = B2 × {1}. Notice that X
and Y are both homeomorphic to B2. Let A = S1 × {0} ⊂ X and B =
S1 × {1} ⊂ Y . Define f : A→ B by f(s, 0) = (s, 1). Prove that Y ∪f X
with the quotient topology is homeomorphic to S2. Generalize, if you can,
this result to higher dimensions.

3. TOPOLOGICAL PROPERTIES

3.1. Separating points.

Definition 3.1. A topological space (X,X ) is Hausdorff (or T2) if for ev-
ery x, y ∈ X with x 6= y there exist disjoint open sets Ux and Uy containing
x and y respectively.

Exercise 3.2. Prove that every metric space is Hausdorff.

Exercise 3.3. Let X = (R\{0}) ∪ {a, b}. Define a base for a topology on
X as follows. Declare the following sets to be open intervals:

(a) (x, y) such that x < 0 and y ≤ 0
(b) (x, y) such that x ≥ 0 and y > 0
(c) (x, 0) ∪ {a} ∪ (0, y) for x < 0 and y > 0.
(d) (x, 0) ∪ {b} ∪ (0, y) for x < 0 and y > 0.

Let X be the topology on X generated by these open intervals.

(a) Show that (X,X ) is not Hausdorff.
(b) Show that X/{a, b} is homeomorphic to R and is, therefore, Haus-

dorff.

Exercise 3.4. Define an equivalence relation ∼ on R by

x ∼ y ⇔ x− y ∈ Q.
Prove that R/∼ is non-Hausdorff.

Exercise 3.5. Let (X,X ) be a topological space. Let A ⊂ X . The closure
of A, denoted A is the smallest closed set containing A. A set A ⊂ X is
dense in X if A = X .

(a) Prove that for any A ⊂ X , the set A exists.
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(b) Prove that Q is dense in R.

Exercise 3.6. Let (X,X ) and (Y,Y) be topological spaces. Let A ⊂ X be
a dense subset of X . Suppose that f : X → Y is a homeomorphism. Prove
that f(A) is dense in Y .

Exercise 3.7. Let (X,X ) be a topological space. Define an equivalence
relation ∼ on X by x ∼ y if there do not exist disjoint open sets Ux and Uy
containing x and y respectively.

(a) Prove that ∼ is an equivalence relation.
(b) Prove that X/ ∼ with the quotient topology is Hausdorff.
(c) Construct a topological space X such that X/ ∼ is homeomorphic

to R and such that the set

A = {[x] : [x] contains more than one element }
is dense in X/ ∼. (Hint: It is possible to make A = X/ ∼.)

3.2. Connectedness.

Definition 3.8. Let (X,X ) be a topological space. X is connected if the
only sets which are both open and closed are X and ∅. Suppose that A ⊂
X is a non-empty set which is both open and closed. If, in the subspace
topology, A is connected then A is a connected component of X .

Exercise 3.9. Prove that (X,X ) is not connected if and only if there exist
nonempty disjoint open sets A,B ⊂ X such that X = A ∪ B. Notice that
A and B are both open and closed.

Exercise 3.10. Give the set N = {1, 2, . . . , n} the discrete topology. Prove
that the number of connected components of a topological space X is at
least n if and only if there exists a continuous surjection of X onto N .

Exercise 3.11. (a) Prove that I = [0, 1] is connected. (Hint use Exercise
3.10 and a theorem from Calculus.)

(b) Prove that if X and Y are connected topological spaces then X × Y
is connected. Conclude that Bn is connected for n ≥ 1.

(c) Prove that if X and Y are homeomorphic topological spaces and if
X is connected then so is Y .

Exercise 3.12. Let (X,X ) and (Y,Y) be topological spaces. Prove that
if (X,X ) is connected and if there exists a surjective continuous function
from X to Y then Y is connected. Conclude that if X is connected and if
∼ is an equivalence relation on X then X/∼ is connected.

Exercise 3.13. Prove that S1 and T n for n ≥ 2 are connected.
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Definition 3.14. Let (X,X ) be a topological space. A path in X is a con-
tinuous function p : I → X . We say that p is a path from p(0) to p(1). A
space (X,X ) is path-connected if for all x, y ∈ X there exists a path from
x to y.

Exercise 3.15. Prove that if X is path-connected then it is connected.
Exercise 3.16. Prove that (0, 1) and R are connected.

Exercise 3.17. Let (X,X ) and (Y,Y) be topological spaces. Prove the
following.

(a) If X is connected and X and Y are homeomorphic then Y is con-
nected.

(b) Suppose that f : X → Y is a homeomorphism. Let x ∈ X . Give
X−{x} and Y−{f(x)} the subspace topologies. Prove thatX−{x}
is homeomorphic to Y − {y}.

(c) Prove that R is not homeomorphic to Rn for n ≥ 2.
(d) Prove that I is not homeomorphic to (0, 1).
(e) Prove that I is not homeomorphic to S1.
(f) Prove that the comb space (Exercise 1.13) is not homeomorphic to

the upper half space with the usual topology.

Definition 3.18. (X,X ) is locally connected if for each point x ∈ X and
each open set U ⊂ X such that x ∈ U , there exists an open set V ⊂ U such
that x ∈ V and V is connected.

Exercise 3.19. (The topologists’ sine curve) Let S be the graph of y =
sin(1/x) for x > 0 in R2. Let

J = {(0, y) ∈ R2 : 0 ≤ y ≤ 1}
Define Γ = S ∪ J . Γ (with the subspace topology) is the topologists’ sine
curve.

(a) Show that Γ is connected.
(b) Show that Γ is not locally connected.
(c) Show that Γ is not path-connected.
(d) Modify the construction of Γ to produce an example of a space

which is path connected but not locally connected.
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3.3. Covers and Compactness.

Definition 3.20. Let (X,X ) be a topological space. A cover of X is a
collection of open sets {Uα : α ∈ A} (for some indexing set A) such that
∪Uα = X . Sometimes this is called an open cover.

Definition 3.21. A topological space (X,X ) is second countable if and
only if there is a countable base for the topology.

Exercise 3.22. Show that a metric space (X, d) is second countable if every
open cover has a countable subcover.

Exercise 3.23. (a) Show that Rn with the usual topology is second count-
able.

(b) Show that if (X,X ) is second countable and if A ⊂ X is given the
subspace topology then A is second countable.

(c) Prove that if (X, d) is a metric space and if X contains a countable
dense subset, then X is second countable.

(d) Prove that if (X,X ) is second countable thenX contains a countable
dense subset.

Exercise 3.24. Let X = R × R. Define (a, b) < (x, y) if a < x or if
a = x and b < y. (This is called the lexicographic order on X .) Define
the interval (a,∞) for a ∈ X to be

(a,∞) = {x ∈ X : a < x}
Similarly define

(−∞, a) = {x ∈ X : x < a}
Let T be the topology on X generated by these intervals. This topology is
called the order topology on X .

(a) Prove that (X, T ) is connected and Hausdorff.
(b) Prove that (X, T ) is not homeomorphic to R2 with the usual topol-

ogy.
(c) (Hard?) Is (X, T ) second countable?

Definition 3.25. Let (X,X ) be a topological space. X is compact if every
cover of X has a finite subcover.

Exercise 3.26. Prove that Rn is not compact for n ≥ 1.

Exercise 3.27. Let (X,X ) be a Hausdorff topological space and suppose
that A ⊂ X is a compact subspace. Prove that A is closed.

Exercise 3.28. Let X and Y be compact topological spaces. Prove the
following:
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(a) The projection of X × Y onto Y is a closed map. That is, the image
of a closed set is a closed set. (This does not use the fact that Y is
compact.)

(b) The projection of X×Y onto Y is a proper map. That is, the preim-
age of a compact set is compact. (This does not use the fact that Y
is compact.)

(c) X × Y is compact.

Exercise 3.29. Let X and Y be topological spaces. Suppose that X is
compact and f : X → Y is continuous. Show that f(X) is compact (with
the subspace topology in Y ).

Exercise 3.30. Prove that if A ⊂ X is closed and if X is compact, then A
is compact.

Exercise 3.31. Prove that if X is compact and if Y is Hausdorff and if
f : X → Y is a continuous bijection then f is a homeomorphism.

The space R is characterized by the fact that ever bounded subset of R has
a least upperbound.

Theorem 3.32. The unit interval I = [0, 1] is compact.

Proof. (See Bredon’s Topology and Geometry.) Let U be an open covering
of I . Let

S = {s ∈ I : [0, s] is covered by a finite subcollection of U}.
Let b be the least upperbound of S. Obviously, either S = [0, b] or S = [0, b)
(proof?). Suppose that S = [0, b). Let U1 be a finite subcover of U which
covers S. Let U be any open set in U which contains b. Then U1 ∪ {U} is a
finite subset of U which covers [0, b]. Hence, b ∈ S. Thus, S = [0, b].

If b < 1 a similar argument (what is it?) shows that we encounter a contra-
diction. Hence, b = 1 and a finite subcover of U covers I . �

Exercise 3.33. (Heine-Borel) Suppose thatX ⊂ Rn is a closed and bounded
subset. Then X is compact (with the subspace topology).

Exercise 3.34. (Extreme Value Theorem) Let X be a compact topological
space and suppose that f : X → R is continuous. Then there is x ∈ X such
that for all y ∈ X , f(x) ≥ f(y). The number f(x) is the global maximum
of f . Similarly, show that f attains its global minimum.

Exercise 3.35. Prove that Sn is compact. Use this to show that, at a fixed
moment in time, someplace on earth has a temperature that is equal to or
larger than the temperature at every other place on earth.
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Exercise 3.36. Prove that Sn and Rm are not homeomorphic for any n,m.

Exercise 3.37. Suppose that X is a Hausdorff space with infinitely many
points. Let x ∈ X . Prove that X\{x} is not compact.

Exercise 3.38. Prove that the middle thirds Cantor set is compact.

Exercise 3.39. (One-point compactification) Let (X,X ) be a locally com-
pact Hausdorff topological space. Let ∗ be a point not in X . Let X̂ =

X ∪ {∗}. Define a topology T on X̂ by declaring a set to be open if it is in
X or if it is X̂ − C for some compact set C ⊂ X . Prove that (X̂, T ) is a
compact, Hausdorff space.

Exercise 3.40. Use the notation from the previous exercise. Prove that T is
the unique topology on X̂ which makes X̂ into a compact, Hausdorff space.

Exercise 3.41. Prove that Sn is the one-point compactification of Rn−1.

Exercise 3.42. Prove that the one point compactification of the rationals in
R is not Hausdorff.

Exercise 3.43. Prove that the one point compactification of a space (X,X )
is connected if and only if X is not compact.

Exercise 3.44. (Hawaiian earring space) Let C be the subset of R2 consist-
ing of the union of circles of radius 1/n with center at (0, 1/n). Let Xi be
the vertical line in R2 passing through the point (i, 0) for i ∈ N. Let X̂ be
the one point compactification of ∪NXi. Prove that C and X̂ are homeo-
morphic.

Exercise 3.45. (The infinite rose) Let Si be a copy of S1 for each i ∈ N. Let
S be the disjoint union of the Si. Let xi be a point in Si. Let A = {x1, . . .}.
Let R = S/A. Show that R is not homeomorphic to the Hawaiian earring.
(Hint: show that there is a point in R which has a neighborhood which is a
tree with infinitely many branches. Show that there is no such point in the
Hawaiian earring space.)
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4. SEQUENCES

Definition 4.1. A sequence in a set X is a function f : N → X . We often
write xi instead of f(i).

Definition 4.2. Let x = {x1, x2, . . .} be a sequence in a topological space
X . A point l ∈ X is a limit point of x if for every open set U containing l
there is an N ∈ N such that for every n ≥ N , xn ∈ U .

Exercise 4.3. (a) Prove that if X has the indiscrete topology then every
point of X is a limit point of every sequence in X .

(b) Prove that if X has the discrete topology then the only sequences
that have limit points are sequences which are eventually constant.

(c) Prove that if a sequence in a Hausdorff space has a limit point then
that limit point is unique.

Definition 4.4. Let X be a topological space and let A ⊂ X . A limit point
of A is a point x ∈ X such that for every open set containing x, U ∩ A
contains a point other than x.

Exercise 4.5. Let X be a metric space and let A ⊂ X .

(a) Prove that if x is a limit point of A then x ∈ A.
(b) Let L be the set of limit points of A. Prove that A = A ∪ L.

Exercise 4.6. Prove that every point of the middle thirds Cantor set C is a
limit point. Hence, C = C.

Exercise 4.7. Let A ⊂ X be a subset of a metric space.

(a) Prove that every limit point of A is the limit of some sequence in A.
(b) Give an example ofX andA such that there is a convergent sequence

in A which does not converge to a limit point of X .
(c) Prove that any such sequence (in part (b)) must eventually be con-

stant.

Definition 4.8. A function f : X → Y is said to be sequentially continu-
ous if whenever a sequence {xi} ⊂ X converges to L ∈ X , the sequence
{f(xi)} ⊂ Y converges to f(L) ∈ Y .

Exercise 4.9. LetX be a metric space and Y a Hausdorff space and f : X →
Y a function. Prove that f is continuous if and only if it is sequentially con-
tinuous.

Exercise 4.10. (Closed sets contain limit points) Let (X,X ) be a Haus-
dorff space. Let A ⊂ X . Prove that A is closed if and only if whenever a
sequence {ai} ⊂ A converges to a point L ∈ X , L ∈ A.
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Definition 4.11. A space (X,X ) is sequentially compact if every sequence
in X contains a convergent subsequence.

Exercise 4.12. Prove that if a metric space is compact then it is sequentially
compact.

Definition 4.13. Let (X, d) be a metric space and let {xi} ⊂ X be a se-
quence. Suppose that for every ε > 0 there exists N ∈ N such that for all
n,m ≥ N , d(xn, xm) < ε. Then the sequence {xi} is a Cauchy sequence.
If every Cauchy sequence in X converges then (X, d) is a complete metric
space.

Exercise 4.14. (a) Prove that if (X, d) is a compact metric space then
(X, d) is complete.

(b) Give an example of a metric space which is complete but noncom-
pact.

Definition 4.15. A metric space (X, d) is totally bounded if for each ε > 0
there exist finitely many points {xi} ⊂ X such that {Bε(xi)} is a cover of
X .

Exercise 4.16. Let (X, d) be a metric metric space. Prove that the following
are equivalent:

(a) X is compact
(b) X is sequentially compact
(c) X is complete and totally bounded

Definition 4.17. If A ⊂ X is a subset of a metric space (X, d), then the
diameter of A is

diam(A) = sup{d(p, q) : p, q ∈ A}
Exercise 4.18. Prove that a compact metric space has finite diameter.

Exercise 4.19. Give an example of two homeomorphic metric spaces such
that one of them has finite diameter and the other infinite diameter.

Exercise 4.20. (Lebesgue Covering Lemma1) Let (X, d) be a compact met-
ric space and let {Uα} be an open covering of X . Then there exists δ > 0
such that for each set A ⊂ X with diam(A) < δ there exists α such that
A ⊂ Uα. The number δ is the Lebesgue number for {Uα}.
Exercise 4.21. (Contraction maps2) Let (X, d) be a complete metric space.
Let f : X → X . Suppose that there exists 0 ≤ λ < 1 such that for every
x, y ∈ X ,

d(f(x), f(y)) ≤ λd(x, y).

1The statement comes from Bredon’s Topology and Geometry
2Taken from Browder’s Mathematical Analysis
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Prove that there is a unique x ∈ X such that f(x) = x. The point x is called
a fixed point of f .


