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1. EULER CHARACTERISTIC OF FINITE GRAPHS

Exercise 1.1. Draw a graph G on a piece of paper and count the number of
vertices V = V (G), edges E = E(G) and faces F = F(G). When counting
the faces include the exterior of the graph as a face.

(a) What is V −E + F? Compare this number with the number your
neighbors obtained.

(b) Make a conjecture about V −E +F for a connected graph.
(c) Make a conjecture about V −E +F for a disconnected graph.

Theorem 1.2. For a finite, connected graph G in the plane with V > 0
vertices, E edges, and F faces (including the exterior)

V −E +F = 2

Before proving the theorem, we first prove it for a special class of graphs.

Definition 1.3. A tree is a connected graph with no loops.

Lemma 1.4. Suppose that T is a tree with V > 0 vertices and E edges. Then
V −E = 1.

Proof. We prove this by induction on E. Suppose that E(T ) = 0. Then,
since T is connected, V (T ) = 1. Clearly, V (T )−E(T ) = 1. Now suppose
that the statement is true for all trees T ′ with fewer than E(T ) edges. Since
T is finite, there exists an edge e such that one endpoint v is not the endpoint
of any other edge. (Proof?) Let T ′ be obtained from T by removing the
edge e and the vertex v, but not the other endpoint of e. Notice that V (T ′) =
V (T )−1 and E(T ′) = E(T )−1. Since v was not the endpoint of any other
edge, T ′ is connected. Furthermore, T ′ is a tree. (Proof?) Thus, by the
inductive hypothesis, V (T ′)−E(T ′) = 1. Hence, V (T )−E(T ) = (V (T ′)+
1)− (E(T ′)+1) = 1. �

Definition 1.5. A maximal tree T in a graph G is a subgraph of G which
is a tree and which contains all the vertices of G.

We now prove the theorem.
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Proof of Theorem 1.2. Let G be a graph in R2 with V (G) vertices, E(G)
edges, and F(G) faces. Choose a maximal tree T ⊂ G (why does one ex-
ist?). Let n(G,T ) be the number of edges of G−T . If n(G,T ) = 0, then
G is a tree and so by Lemma 1.2, V (G)−E(G) = 1. If G is a tree, the
only face is the exterior face and so F(G) = 1. Hence, if n(G,T ) = 0,
V (G)−E(G)+F(G) = 2.

Let G′ be a graph and T ′ ⊂G′ be a maximal tree. Suppose that the theorem
is true for G′ if n(G′,T ′) < n(G,T ). Let e be an edge of G−T and let G′

be the graph obtained by removing e from G. Then G′ is a connected graph
(proof?) and T ′ = T ⊂ G′ is a maximal tree for G′ (proof?). Furthermore,
n(G′,T ′) = n(G,T )−1. Thus, by the inductive hypothesis,

V (G′)−E(G′)+F(G′) = 2.

Now, G is obtained from G′ by attaching the edge e. The edge e lies in
some face of G′ and therefore (?) must cut it into two faces. Thus, F(G) =
F(G′)+1. Hence,

V (G)−E(G)+F(G) = V (G′)− (E(G′)+1)+(F(G′)+1) = 2.

�

We now consider graphs on the 2–sphere S2. For such a graph G, let V (G),
E(G), and F(G) denote the number of vertices, edges, and faces as before.

Lemma 1.6. (Stereographic Projection) Let G ⊂ S2 be a finite connected
graph. Then there is a connected graph G′ ⊂ R2 such that V (G′) = V (G),
E(G′) = E(G) and F(G′) = F(G).

Proof. Let N ∈ S2 be a point not on G. (Does such a point exist?) Rotate
and translate S2 in R3 so that the center of S2 is (0,0,1) ∈ R3 and the point
N = (0,0,2). For each point x ∈ S2−{N} define a point y ∈ R2 as follows.
Draw the line Lx through the points N and x. The line Lx intersects the
xy–plane R2 in a unique point. Call that point y. We have defined a function

stereo : S2−{N}→ R2.

Let G′ = stereo(G). It is easy to see that G′ satisfies the conclusion of the
lemma. �

Corollary 1.7. For a finite, connected graph G on S2, V (G)− E(G) +
F(G) = 2.

This corollary has a very nice geometric consequence.
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Definition 1.8. A regular polyhedron is a polyhedron all of whose faces
are regular n–gons and such that every vertex has the same number of faces
incident to it. A convex regular polyhedron is called a Platonic solid.

Theorem 1.9. (Platonic solids) There are at most 5 Platonic solids.

Proof. Let P be a platonic solid with faces that are regular n–gons and with
s faces around each vertex. The vertices and edges of P form a graph G.
Let V be the number of vertices, E the number of edges, and F the number
of faces. Notice that:

E = nF/2 and
V = nF/s.

Inscribe P in a sphere S2 of radius 1. (Can this be done?) Use radial pro-
jection to send G to a graph G′ on S2. Notice that G′ is connected and that
V (G′) =V , E(G′) = E, and F(G′) = F . Hence, V −E +F = 2 by Corollary
1.7. Consequently,

F
(n

s
− n

2
+1

)
= 2.

This can be rewritten as

F
(2(n+ s)−ns

2s

)
= 2

Recall that F , n, and s are all positive integers. Since the faces of the pla-
tonic solid are rigid n–gons, F ≥ 3. Since the interior angle of a regular
n–gon is less than 180◦, s≥ 3 and n≥ 3.

Notice that 2(n + s)− ns > 0. This means that n < 2s/(s− 2). If s = 7,
then 2s/(s−2) = 2.8. The function s→ 2s/(s−2) is a decreasing function
and so for s ≥ 7, n < 3. Similarly, if n ≥ 7, s < 3. Thus, both n and s
are between 3 and 6. Of the possibilities for (n,s) the only ones that make
2(n+s)−ns

2s positive are: (3,3), (4,3), (5,3), (3,4), and (3,5). In particular,
there are just five possibilities for n and s given these constraints. �

The cube, tetrahedron, octahedron, dodecahedron, and icosahedron are five
Platonic solids. Using the previous theorem, it is possible to show that they
are the only five.


