Lectures on Geometric Topology

Scott Taylor
Colby College
Spring 2009

1. Euler Characteristic of Finite Graphs

Exercise 1.1. Draw a graph G on a piece of paper and count the number of vertices $V=V(G)$, edges $E=E(G)$ and faces $F=F(G)$. When counting the faces include the exterior of the graph as a face.
(a) What is $V-E+F$? Compare this number with the number your neighbors obtained.
(b) Make a conjecture about $V-E+F$ for a connected graph.
(c) Make a conjecture about $V-E+F$ for a disconnected graph.

Theorem 1.2. For a finite, connected graph G in the plane with $V>0$ vertices, E edges, and F faces (including the exterior)

$$
V-E+F=2
$$

Before proving the theorem, we first prove it for a special class of graphs.
Definition 1.3. A tree is a connected graph with no loops.
Lemma 1.4. Suppose that T is a tree with $V>0$ vertices and E edges. Then $V-E=1$.

Proof. We prove this by induction on E. Suppose that $E(T)=0$. Then, since T is connected, $V(T)=1$. Clearly, $V(T)-E(T)=1$. Now suppose that the statement is true for all trees T^{\prime} with fewer than $E(T)$ edges. Since T is finite, there exists an edge e such that one endpoint v is not the endpoint of any other edge. (Proof?) Let T^{\prime} be obtained from T by removing the edge e and the vertex v, but not the other endpoint of e. Notice that $V\left(T^{\prime}\right)=$ $V(T)-1$ and $E\left(T^{\prime}\right)=E(T)-1$. Since v was not the endpoint of any other edge, T^{\prime} is connected. Furthermore, T^{\prime} is a tree. (Proof?) Thus, by the inductive hypothesis, $V\left(T^{\prime}\right)-E\left(T^{\prime}\right)=1$. Hence, $V(T)-E(T)=\left(V\left(T^{\prime}\right)+\right.$ 1) $-\left(E\left(T^{\prime}\right)+1\right)=1$.

Definition 1.5. A maximal tree T in a graph G is a subgraph of G which is a tree and which contains all the vertices of G.

We now prove the theorem.

Proof of Theorem 1.2. Let G be a graph in \mathbb{R}^{2} with $V(G)$ vertices, $E(G)$ edges, and $F(G)$ faces. Choose a maximal tree $T \subset G$ (why does one exist?). Let $n(G, T)$ be the number of edges of $G-T$. If $n(G, T)=0$, then G is a tree and so by Lemma $1.2, V(G)-E(G)=1$. If G is a tree, the only face is the exterior face and so $F(G)=1$. Hence, if $n(G, T)=0$, $V(G)-E(G)+F(G)=2$.
Let G^{\prime} be a graph and $T^{\prime} \subset G^{\prime}$ be a maximal tree. Suppose that the theorem is true for G^{\prime} if $n\left(G^{\prime}, T^{\prime}\right)<n(G, T)$. Let e be an edge of $G-T$ and let G^{\prime} be the graph obtained by removing e from G. Then G^{\prime} is a connected graph (proof?) and $T^{\prime}=T \subset G^{\prime}$ is a maximal tree for G^{\prime} (proof?). Furthermore, $n\left(G^{\prime}, T^{\prime}\right)=n(G, T)-1$. Thus, by the inductive hypothesis,

$$
V\left(G^{\prime}\right)-E\left(G^{\prime}\right)+F\left(G^{\prime}\right)=2
$$

Now, G is obtained from G^{\prime} by attaching the edge e. The edge e lies in some face of G^{\prime} and therefore (?) must cut it into two faces. Thus, $F(G)=$ $F\left(G^{\prime}\right)+1$. Hence,

$$
V(G)-E(G)+F(G)=V\left(G^{\prime}\right)-\left(E\left(G^{\prime}\right)+1\right)+\left(F\left(G^{\prime}\right)+1\right)=2
$$

We now consider graphs on the 2 -sphere S^{2}. For such a graph G, let $V(G)$, $E(G)$, and $F(G)$ denote the number of vertices, edges, and faces as before.

Lemma 1.6. (Stereographic Projection) Let $G \subset S^{2}$ be a finite connected graph. Then there is a connected graph $G^{\prime} \subset \mathbb{R}^{2}$ such that $V\left(G^{\prime}\right)=V(G)$, $E\left(G^{\prime}\right)=E(G)$ and $F\left(G^{\prime}\right)=F(G)$.

Proof. Let $N \in S^{2}$ be a point not on G. (Does such a point exist?) Rotate and translate S^{2} in \mathbb{R}^{3} so that the center of S^{2} is $(0,0,1) \in \mathbb{R}^{3}$ and the point $N=(0,0,2)$. For each point $x \in S^{2}-\{N\}$ define a point $y \in \mathbb{R}^{2}$ as follows. Draw the line L_{x} through the points N and x. The line L_{x} intersects the $x y$-plane \mathbb{R}^{2} in a unique point. Call that point y. We have defined a function

$$
\text { stereo: } S^{2}-\{N\} \rightarrow \mathbb{R}^{2}
$$

Let $G^{\prime}=\operatorname{stereo}(G)$. It is easy to see that G^{\prime} satisfies the conclusion of the lemma.

Corollary 1.7. For a finite, connected graph G on $S^{2}, V(G)-E(G)+$ $F(G)=2$.

This corollary has a very nice geometric consequence.

Definition 1.8. A regular polyhedron is a polyhedron all of whose faces are regular n-gons and such that every vertex has the same number of faces incident to it. A convex regular polyhedron is called a Platonic solid.
Theorem 1.9. (Platonic solids) There are at most 5 Platonic solids.
Proof. Let P be a platonic solid with faces that are regular n-gons and with s faces around each vertex. The vertices and edges of P form a graph G. Let V be the number of vertices, E the number of edges, and F the number of faces. Notice that:

$$
\begin{array}{lll}
E & =n F / 2 & \text { and } \\
V & =n F / s &
\end{array}
$$

Inscribe P in a sphere S^{2} of radius 1. (Can this be done?) Use radial projection to send G to a graph G^{\prime} on S^{2}. Notice that G^{\prime} is connected and that $V\left(G^{\prime}\right)=V, E\left(G^{\prime}\right)=E$, and $F\left(G^{\prime}\right)=F$. Hence, $V-E+F=2$ by Corollary 1.7. Consequently,

$$
F\left(\frac{n}{s}-\frac{n}{2}+1\right)=2
$$

This can be rewritten as

$$
F\left(\frac{2(n+s)-n s}{2 s}\right)=2
$$

Recall that F, n, and s are all positive integers. Since the faces of the platonic solid are rigid n-gons, $F \geq 3$. Since the interior angle of a regular n-gon is less than $180^{\circ}, s \geq 3$ and $n \geq 3$.
Notice that $2(n+s)-n s>0$. This means that $n<2 s /(s-2)$. If $s=7$, then $2 s /(s-2)=2.8$. The function $s \rightarrow 2 s /(s-2)$ is a decreasing function and so for $s \geq 7, n<3$. Similarly, if $n \geq 7, s<3$. Thus, both n and s are between 3 and 6 . Of the possibilities for (n, s) the only ones that make $\frac{2(n+s)-n s}{2 s}$ positive are: $(3,3),(4,3),(5,3),(3,4)$, and $(3,5)$. In particular, there are just five possibilities for n and s given these constraints.

The cube, tetrahedron, octahedron, dodecahedron, and icosahedron are five Platonic solids. Using the previous theorem, it is possible to show that they are the only five.

