2. THE POLYGONAL JORDAN CURVE THEOREM

A simple closed curve C in R? is a subspace of R? such that, with the
subspace topology, it is homeomorphic to S'. It is polygonal if there are a
finite number of points " C C such that C — 7 is a collection of straight
line segments. Notice that the number of such line segments must be finite.

Theorem 2.1 (Jordan Curve Theorem). If C is a simply closed polygonal
curve in R2, then ]RZ\C has exactly two connected components. These are,
in fact, path-connected components.

Proof. The proof proceeds in two stages: first, we show that the number of
connected components is no more than two and second, we show it is not
less than two.

Step 1: Let x € C\ 7. Since the number of edges of C\ 7 is finite, there is
a disc B = B(x, ) centered at x such that B is disjoint from ¥" and BNC is
a (connected) line segment. (This uses the fact that the distance from x to a
compact set attains its minimum.) It is clear that B\C has two components.
Let y € R?\C. Since R? is path connected, there is a path from y to C which
has interior disjoint from C. Since C is polygonal, rather than having the
path go from y to C, the path can go from y to a line “close to” C. “Close
to”, means that there is a disc between the line and C whose interior is
disjoint from C. See Figure 1. Following lines near to C, the path follows
the course of C (without ever intersecting it) until it enters B. Thus, each
connected component of R?\C contains a component of B\C. Hence, there
are at most two connected components. Notice that the argument implies
that these are path connected components.

FIGURE 1. A path entering B on one side of C.

Step 2: To show that R?\C has not fewer than two connected components,
we will create a continuous surjection f: R?\C — {0,1} where {0, 1} has
the discrete topology. Since {0, 1} has two elements, this is enough to guar-
antee that R?\C has at least two connected components.
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Let x € R?\C and let y be a ray extending from x with angle 6. The inter-
section xN Y consists of line segments and points not on line segments con-
tained in x N y. Call these latter points, “individual intersection points”. Let
7 (0) be the set of these line segments and individual intersection points.
See Figure 2. If p € .7 (60) Let i(p, 0) be 0 if the edges adjacent to y are on
the same side of y and let i(p, 0) be 1 if they are on opposite sides.

f(x,0)= Z i(p,0)(mod 2).
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FIGURE 2. Calculating f.

Lemma 2.2. Let x be fixed. For any two angles 6,60’, f(x,0) = f(x,0’).

Proof. We prove that f, = f(x,-): S! — {0,1} is continuous. Since S is
connected, this implies that f, is constant. Suppose that 8 € S!, we will
show that there is an open set containing 6 on which f, is constant. Let ¥
be the ray with angle 6.

Since ¥ is finite, there is an open interval J on S' containing 6 such that
for all rays y with angle ¢ in J, either ¥ = yor y N7 = &. See Figure
2. If i(p,0) = 0, then for all ¢ to one side of 0 in J there are two points of
intersection of y with the edges of C adjacent to p. For all ¢ to the other side
of 8 in J, y does not intersect at all the edges of C adjacent to p. Similarly,
ifi(p,0) = 1, then to calculate f(x, ) there is one edge adjacent to p which
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intersects Y. Thus, because we work modulo 2, the change of intersection
at p is unchanged. Since this is true for all p in .#(0), .Z(0) = .Z(y) for
all y € J. O

Consequently, define f(x) to be f(x, ) for any angle 8 € S'.

Lemma 2.3. The function f: R?\C — {0,1} is continuous.

Proof. Once again, we will show that for all x in RZ\C there is a ball cen-
tered at x on which f is constant. Let x € R?\C. Since C is compact, there
is a ball D centered at x contained in R?\C. Let y € D. Since D is convex.
There is a line segment e joining x and y which is contained in D and is,
therefore, disjoint from C. Let ¥, be the ray emanating from y containing e
and let ¥; be the ray emanating from x contained in %. Let 6, and 6 be the
corresponding angles. Since e is disjoint from C,

f<x7 ex) = f()’a Oy)-
Since f(x, 6,) and f(y, 6,) are independent of 6, and 6,, the result follows
immediately. 0

It remains to show that f is surjective. Let x and y be in B\C and be on
opposite sides of C. Let }, be the ray based at x and passing through y.
Since B is convex, % NC intersects C exactly once. Let ¥, be the ray based
at y and contained in 9. Then 7 N C has one more component than does
% NC. This component is a point in the interior of an edge of C and so
f(x) = f(y) 4+ 1(modulo 2). Thus, f is surjective.

Therefore, R?\C has exactly two components. U
The Schénflies Theorem says that one component of R?\C is homeomor-

phic to a disc and the other is homemorphic to a disc minus a point. This is
harder to prove.



