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2. THE POLYGONAL JORDAN CURVE THEOREM

A simple closed curve C in R2 is a subspace of R2 such that, with the
subspace topology, it is homeomorphic to S1. It is polygonal if there are a
finite number of points V ⊂ C such that C−V is a collection of straight
line segments. Notice that the number of such line segments must be finite.

Theorem 2.1 (Jordan Curve Theorem). If C is a simply closed polygonal
curve in R2, then R2\C has exactly two connected components. These are,
in fact, path-connected components.

Proof. The proof proceeds in two stages: first, we show that the number of
connected components is no more than two and second, we show it is not
less than two.

Step 1: Let x ∈C\V . Since the number of edges of C\V is finite, there is
a disc B = B(x,δ ) centered at x such that B is disjoint from V and B∩C is
a (connected) line segment. (This uses the fact that the distance from x to a
compact set attains its minimum.) It is clear that B\C has two components.
Let y ∈R2\C. Since R2 is path connected, there is a path from y to C which
has interior disjoint from C. Since C is polygonal, rather than having the
path go from y to C, the path can go from y to a line “close to” C. “Close
to”, means that there is a disc between the line and C whose interior is
disjoint from C. See Figure 1. Following lines near to C, the path follows
the course of C (without ever intersecting it) until it enters B. Thus, each
connected component of R2\C contains a component of B\C. Hence, there
are at most two connected components. Notice that the argument implies
that these are path connected components.
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FIGURE 1. A path entering B on one side of C.

Step 2: To show that R2\C has not fewer than two connected components,
we will create a continuous surjection f : R2\C → {0,1} where {0,1} has
the discrete topology. Since {0,1} has two elements, this is enough to guar-
antee that R2\C has at least two connected components.
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Let x ∈ R2\C and let γ be a ray extending from x with angle θ . The inter-
section x∩ γ consists of line segments and points not on line segments con-
tained in x∩ γ . Call these latter points, “individual intersection points”. Let
I (θ) be the set of these line segments and individual intersection points.
See Figure 2. If p ∈I (θ) Let i(p,θ) be 0 if the edges adjacent to y are on
the same side of γ and let i(p,θ) be 1 if they are on opposite sides.

f (x,θ) = ∑
p∈I (θ)

i(p,θ)(mod 2).
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FIGURE 2. Calculating f .

Lemma 2.2. Let x be fixed. For any two angles θ ,θ ′, f (x,θ) = f (x,θ ′).

Proof. We prove that fx = f (x, ·) : S1 → {0,1} is continuous. Since S1 is
connected, this implies that fx is constant. Suppose that θ ∈ S1, we will
show that there is an open set containing θ on which fx is constant. Let γ
be the ray with angle θ .

Since V is finite, there is an open interval J on S1 containing θ such that
for all rays ψ with angle φ in J, either ψ = γ or ψ ∩V = ∅. See Figure
2. If i(p,θ) = 0, then for all φ to one side of θ in J there are two points of
intersection of ψ with the edges of C adjacent to p. For all φ to the other side
of θ in J, ψ does not intersect at all the edges of C adjacent to p. Similarly,
if i(p,θ) = 1, then to calculate f (x,ψ) there is one edge adjacent to p which
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intersects ψ . Thus, because we work modulo 2, the change of intersection
at p is unchanged. Since this is true for all p in I (θ), I (θ) = I (ψ) for
all ψ ∈ J. !

Consequently, define f (x) to be f (x,θ) for any angle θ ∈ S1.

Lemma 2.3. The function f : R2\C →{0,1} is continuous.

Proof. Once again, we will show that for all x in R2\C there is a ball cen-
tered at x on which f is constant. Let x ∈ R2\C. Since C is compact, there
is a ball D centered at x contained in R2\C. Let y ∈ D. Since D is convex.
There is a line segment e joining x and y which is contained in D and is,
therefore, disjoint from C. Let γy be the ray emanating from y containing e
and let γx be the ray emanating from x contained in γy. Let θy and θx be the
corresponding angles. Since e is disjoint from C,

f (x,θx) = f (y,θy).
Since f (x,θx) and f (y,θy) are independent of θx and θy, the result follows
immediately. !

It remains to show that f is surjective. Let x and y be in B\C and be on
opposite sides of C. Let γx be the ray based at x and passing through y.
Since B is convex, γx∩C intersects C exactly once. Let γy be the ray based
at y and contained in γx. Then γx ∩C has one more component than does
γy ∩C. This component is a point in the interior of an edge of C and so
f (x) = f (y)+1(modulo 2). Thus, f is surjective.

Therefore, R2\C has exactly two components. !

The Schönflies Theorem says that one component of R2\C is homeomor-
phic to a disc and the other is homemorphic to a disc minus a point. This is
harder to prove.


