2. The polygonal Jordan Curve Theorem

A simple closed curve C in \mathbb{R}^{2} is a subspace of \mathbb{R}^{2} such that, with the subspace topology, it is homeomorphic to S^{1}. It is polygonal if there are a finite number of points $\mathscr{V} \subset C$ such that $C-\mathscr{V}$ is a collection of straight line segments. Notice that the number of such line segments must be finite.

Theorem 2.1 (Jordan Curve Theorem). If C is a simply closed polygonal curve in \mathbb{R}^{2}, then $\mathbb{R}^{2} \backslash C$ has exactly two connected components. These are, in fact, path-connected components.

Proof. The proof proceeds in two stages: first, we show that the number of connected components is no more than two and second, we show it is not less than two.
Step 1: Let $x \in C \backslash \mathscr{V}$. Since the number of edges of $C \backslash \mathscr{V}$ is finite, there is a disc $B=B(x, \delta)$ centered at x such that B is disjoint from \mathscr{V} and $B \cap C$ is a (connected) line segment. (This uses the fact that the distance from x to a compact set attains its minimum.) It is clear that $B \backslash C$ has two components. Let $y \in \mathbb{R}^{2} \backslash C$. Since \mathbb{R}^{2} is path connected, there is a path from y to C which has interior disjoint from C. Since C is polygonal, rather than having the path go from y to C, the path can go from y to a line "close to" C. "Close to", means that there is a disc between the line and C whose interior is disjoint from C. See Figure 1. Following lines near to C, the path follows the course of C (without ever intersecting it) until it enters B. Thus, each connected component of $\mathbb{R}^{2} \backslash C$ contains a component of $B \backslash C$. Hence, there are at most two connected components. Notice that the argument implies that these are path connected components.

Figure 1. A path entering B on one side of C.

Step 2: To show that $\mathbb{R}^{2} \backslash C$ has not fewer than two connected components, we will create a continuous surjection $f: \mathbb{R}^{2} \backslash C \rightarrow\{0,1\}$ where $\{0,1\}$ has the discrete topology. Since $\{0,1\}$ has two elements, this is enough to guarantee that $\mathbb{R}^{2} \backslash C$ has at least two connected components.

Let $x \in \mathbb{R}^{2} \backslash C$ and let γ be a ray extending from x with angle θ. The intersection $x \cap \gamma$ consists of line segments and points not on line segments contained in $x \cap \gamma$. Call these latter points, "individual intersection points". Let $\mathscr{I}(\theta)$ be the set of these line segments and individual intersection points. See Figure 2. If $p \in \mathscr{I}(\theta)$ Let $i(p, \theta)$ be 0 if the edges adjacent to y are on the same side of γ and let $i(p, \theta)$ be 1 if they are on opposite sides.

$$
f(x, \theta)=\sum_{p \in \mathscr{I}(\theta)} i(p, \theta)(\bmod 2)
$$

Figure 2. Calculating f.

Lemma 2.2. Let x be fixed. For any two angles $\theta, \theta^{\prime}, f(x, \theta)=f\left(x, \theta^{\prime}\right)$.
Proof. We prove that $f_{x}=f(x, \cdot): S^{1} \rightarrow\{0,1\}$ is continuous. Since S^{1} is connected, this implies that f_{x} is constant. Suppose that $\theta \in S^{1}$, we will show that there is an open set containing θ on which f_{x} is constant. Let γ be the ray with angle θ.
Since \mathscr{V} is finite, there is an open interval J on S^{1} containing θ such that for all rays ψ with angle ϕ in J, either $\psi=\gamma$ or $\psi \cap \mathscr{V}=\varnothing$. See Figure 2. If $i(p, \theta)=0$, then for all ϕ to one side of θ in J there are two points of intersection of ψ with the edges of C adjacent to p. For all ϕ to the other side of θ in J, ψ does not intersect at all the edges of C adjacent to p. Similarly, if $i(p, \theta)=1$, then to calculate $f(x, \psi)$ there is one edge adjacent to p which
intersects ψ. Thus, because we work modulo 2 , the change of intersection at p is unchanged. Since this is true for all p in $\mathscr{I}(\theta), \mathscr{I}(\theta)=\mathscr{I}(\psi)$ for all $\psi \in J$.

Consequently, define $f(x)$ to be $f(x, \theta)$ for any angle $\theta \in S^{1}$.
Lemma 2.3. The function $f: \mathbb{R}^{2} \backslash C \rightarrow\{0,1\}$ is continuous.
Proof. Once again, we will show that for all x in $\mathbb{R}^{2} \backslash C$ there is a ball centered at x on which f is constant. Let $x \in \mathbb{R}^{2} \backslash C$. Since C is compact, there is a ball D centered at x contained in $\mathbb{R}^{2} \backslash C$. Let $y \in D$. Since D is convex. There is a line segment e joining x and y which is contained in D and is, therefore, disjoint from C. Let γ_{y} be the ray emanating from y containing e and let γ_{x} be the ray emanating from x contained in γ_{y}. Let θ_{y} and θ_{x} be the corresponding angles. Since e is disjoint from C,

$$
f\left(x, \theta_{x}\right)=f\left(y, \theta_{y}\right) .
$$

Since $f\left(x, \theta_{x}\right)$ and $f\left(y, \theta_{y}\right)$ are independent of θ_{x} and θ_{y}, the result follows immediately.

It remains to show that f is surjective. Let x and y be in $B \backslash C$ and be on opposite sides of C. Let γ_{x} be the ray based at x and passing through y. Since B is convex, $\gamma_{x} \cap C$ intersects C exactly once. Let γ_{y} be the ray based at y and contained in γ_{x}. Then $\gamma_{x} \cap C$ has one more component than does $\gamma_{y} \cap C$. This component is a point in the interior of an edge of C and so $f(x)=f(y)+1$ (modulo 2). Thus, f is surjective.
Therefore, $\mathbb{R}^{2} \backslash C$ has exactly two components.
The Schönflies Theorem says that one component of $\mathbb{R}^{2} \backslash C$ is homeomorphic to a disc and the other is homemorphic to a disc minus a point. This is harder to prove.

