Invariance of Dimension

The purpose of this lecture is to prove:
Theorem 1. If $n \neq m$, then no open set in \mathbb{R}^{n} is homeomorphic to an open set in \mathbb{R}^{m}.

To prove this we will use Sperner's Lemma to prove that the topological dimension of an $n-\operatorname{simplex} \Delta^{n}$ is equal to n.

Definition 2. Suppose that Δ^{k} is an n-simplex which is the convex hull of the affinely independent points $v_{0}, \ldots, v_{n} \in \mathbb{R}^{n}$. The barycenter of Δ^{k} is the point $\left(v_{0}+\ldots+v_{k}\right) /(k+1)$.

Suppose that Δ^{n} is an n-simplex. The first barycentric subdivision \mathscr{T}_{1} of Δ^{n} is the triangulation of Δ^{n} constructed in the following way. The vertices $\mathscr{T}^{(0)}$ of \mathscr{T} are the points which are the barycenters of all the faces of Δ^{n}. Now we define the n-simplices of $\mathscr{T}:(k+1)$ affinely independent vertices w_{0}, \ldots, w_{k} of \mathscr{T} determine a n-simplex of \mathscr{T} if and only if the convex hull of $\left\{w_{0}, \ldots, w_{k}\right\}$ intersects $\mathscr{T}^{(0)}$ only in the points $\left\{w_{0}, \ldots, w_{k}\right\}$. The p th barycentric subdivision \mathscr{T}_{p} of Δ^{n} is obtained by taking the first barycentric subdivision of each of the n-simplices in \mathscr{T}_{p-1}. Notice that as $p \rightarrow \infty$, the diameter of each n-simplex in p th barycentric subdivision is converging to zero.

Theorem 3. The topological dimension of Δ^{n} is at least n.
Proof. By definition, the dimension of Δ^{n} is less than or equal to K if, for all $\varepsilon>0$, there exists a finite closed cover of Δ^{n} by sets of diameter less than ε which has order $K+1$. We wish to show that the dimension of Δ^{n} is not less than or equal $n-1$. Thus, we must show that there exists $\varepsilon>0$ such that if \mathscr{U} is a finite closed cover of Δ^{n} by sets of diameter less than ε, then the order of \mathscr{U} is at least $n+1$.

Let F_{0}, \ldots, F_{n} be the $n-1$ dimensional faces of Δ^{n}. Let a_{i} be the vertex of Δ^{n} which is opposite F_{i}. For each i, the set $\Delta^{n} \backslash F_{i}$ is open in Δ^{n}. The collection $\left\{\Delta^{n} \backslash F_{i}\right\}$ is an open cover of Δ^{n}. Let ε be the Lebesgue number of this cover. Suppose that \mathscr{U} is a finite closed cover of Δ^{n} by sets of diameter less than ε. We wish to show that the order of \mathscr{U} is at least $n+1$.

For each $U \in \mathscr{U}$, $\operatorname{diam}(U)<\varepsilon$. Since ε is the Lebesgue number of the open cover $\left\{\Delta^{n} \backslash F_{i}\right\}$, there exists i so that $U \subset \Delta^{n} \backslash F_{i}$. Define a function $\phi: \mathscr{U} \rightarrow\{0, \ldots, n\}$ so that $\phi(U)=i \Rightarrow U \subset \Delta^{n} \backslash F_{i}$.

Notice the following: If $\phi(U)=i$ then U is disjoint from F_{i}. Also, if $\phi(U)=$ i then either U is disjoint from the vertices $\left\{a_{0}, \ldots, a_{n}\right\}$ of Δ^{n} or a_{i} is the sole
vertex of Δ^{n} which is contained in U. Since \mathscr{U} is a cover of Δ^{n}, each vertex a_{i} is contained in some U for which $\phi(U)=i$.

Define

$$
A_{i}=\bigcup_{\phi(U)=i} U
$$

Notice that

$$
\bigcup_{i=0}^{n} A_{i}=\bigcup_{U \in \mathscr{U}} U=\Delta^{n}
$$

Notice also that $a_{i} \in A_{i}$ and that $A_{i} \cap F_{i}=\varnothing$.
We now set out to use Sperner's Lemma:
Let \mathscr{T}_{p} be the p th barycentric subdivision of Δ. To each $x \in \Delta$ assign a label $L(x)=\min \left\{i \mid x \in A_{i}\right\}$. Notice that $L\left(a_{i}\right)=i$. Also notice that if x is on a face of Δ^{n} which is the convex hull of $\left\{a_{i_{1}}, \ldots a_{i_{k}}\right\}$ then $L(x) \in\left\{i_{1}, \ldots, i_{k}\right\}$. Thus the labelling of \mathscr{T}_{p} satisfies the hypotheses of Sperner's Lemma. Thus, \mathscr{T}_{p} contains a completely labelled n-simplex Δ_{p}. Choose $x_{p} \in \Delta_{p}$. Since Δ^{n} is sequentially compact, there is a convergent subsequence of $\left\{x_{p}\right\}$. To conserve notation, call this subsequence $\left\{x_{p}\right\}$ and let $L=\lim \left\{x_{p}\right\}$.

Claim: For each $i, L \in A_{i}$
By the choice of labelling Δ_{p} has a vertex w_{p} in A_{i}. Since diam $\left(\Delta_{p}\right) \rightarrow 0$, $\lim w_{p}=\lim x_{p}=L . A_{i}$ is the union of finitely many closed sets and so is closed. Thus, $L \in A_{i}$.
\square (Claim)
Since $L \in A_{i}$, there exists $U_{i} \in \mathscr{U}$ so that $\phi\left(U_{i}\right)=i$. Notice that $U_{i} \neq U_{j}$ if $i \neq j$. Thus, L is in the intersection of the sets U_{0}, \ldots, U_{n}, and so \mathscr{U} has order at least $n+1$, as desired.

Theorem 4. The topological dimension of Δ^{n} is no more than n.
Proof. We must show that for all $\varepsilon>0$, there exists a finite closed cover of Δ^{n} by sets of diameter less than epsilon which has order $n+1$. Such a cover can be constructed using barycentric subdivisions of Δ^{n}. We will not discuss the details here: look at page 59 in the text or see your class notes.

Corollary 5. The topological dimension of Δ^{n} is exactly n.
Theorem 6 (Invariance of domain). If an open set of \mathbb{R}^{m} is homeomorphic to an open set of \mathbb{R}^{n} then $m=n$.

Proof. Suppose that $U \subset \mathbb{R}^{m}$ and $V \subset \mathbb{R}^{n}$ are open sets and that $h: U \rightarrow V$ is a homeomorphism. Since U is open, it contains an open ball. Thus,
U contains an m-simplex Δ^{m}. Since h is continuous, $h\left(\Delta^{m}\right)$ is a compact set in $V \subset \mathbb{R}^{n}$. A set in \mathbb{R}^{n} is compact if and only if it is closed and bounded. Since $h\left(\Delta^{m}\right)$ is bounded, it is contained in a ball $B_{r}(0)$. Let $e_{k}=(0, \ldots, 0, r, 0, \ldots, 0)$ with the k th coordinate equal to r. Let e_{0} denote a vector not in $B_{r}(0)$ which is affinely independent from $\left\{e_{1}, \ldots, e_{n}\right\}$. Then the convex hull of $\left\{e_{0}, \ldots, e_{n}\right\}$ is a n-simplex Δ^{n} in \mathbb{R}^{n} containing $h\left(\Delta^{m}\right)$. By an exercise, the topological dimension of Δ^{n} is at least the topological dimension of $h\left(\Delta^{m}\right)$. Since topological dimension is a homeomorphism invariant, this shows that $n \geq m$. The argument obtained by switching n and m in the previous argument shows that $m \geq n$. Thus, $m=n$.

