Invariance of Dimension

The purpose of this lecture is to prove:

Theorem 1. If $n \neq m$, then no open set in \mathbb{R}^n is homeomorphic to an open set in \mathbb{R}^m .

To prove this we will use Sperner's Lemma to prove that the topological dimension of an *n*-simplex Δ^n is equal to *n*.

Definition 2. Suppose that Δ^k is an *n*-simplex which is the convex hull of the affinely independent points $v_0, \ldots, v_n \in \mathbb{R}^n$. The **barycenter** of Δ^k is the point $(v_0 + \ldots + v_k)/(k+1)$.

Suppose that Δ^n is an *n*-simplex. The **first barycentric subdivision** \mathscr{T}_1 of Δ^n is the triangulation of Δ^n constructed in the following way. The vertices $\mathscr{T}^{(0)}$ of \mathscr{T} are the points which are the barycenters of all the faces of Δ^n . Now we define the *n*-simplices of $\mathscr{T}: (k+1)$ affinely independent vertices w_0, \ldots, w_k of \mathscr{T} determine a *n*-simplex of \mathscr{T} if and only if the convex hull of $\{w_0, \ldots, w_k\}$ intersects $\mathscr{T}^{(0)}$ only in the points $\{w_0, \ldots, w_k\}$. The *p***th barycentric subdivision** \mathscr{T}_p of Δ^n is obtained by taking the first barycentric subdivision of each of the *n*-simplices in \mathscr{T}_{p-1} . Notice that as $p \to \infty$, the diameter of each *n*-simplex in *p*th barycentric subdivision is converging to zero.

Theorem 3. The topological dimension of Δ^n is at least *n*.

Proof. By definition, the dimension of Δ^n is less than or equal to *K* if, for all $\varepsilon > 0$, there exists a finite closed cover of Δ^n by sets of diameter less than ε which has order K + 1. We wish to show that the dimension of Δ^n is not less than or equal n - 1. Thus, we must show that there exists $\varepsilon > 0$ such that if \mathscr{U} is a finite closed cover of Δ^n by sets of diameter less than ε , then the order of \mathscr{U} is at least n + 1.

Let F_0, \ldots, F_n be the n-1 dimensional faces of Δ^n . Let a_i be the vertex of Δ^n which is opposite F_i . For each *i*, the set $\Delta^n \setminus F_i$ is open in Δ^n . The collection $\{\Delta^n \setminus F_i\}$ is an open cover of Δ^n . Let ε be the Lebesgue number of this cover. Suppose that \mathscr{U} is a finite closed cover of Δ^n by sets of diameter less than ε . We wish to show that the order of \mathscr{U} is at least n + 1.

For each $U \in \mathscr{U}$, diam $(U) < \varepsilon$. Since ε is the Lebesgue number of the open cover $\{\Delta^n \setminus F_i\}$, there exists *i* so that $U \subset \Delta^n \setminus F_i$. Define a function $\phi : \mathscr{U} \to \{0, ..., n\}$ so that $\phi(U) = i \Rightarrow U \subset \Delta^n \setminus F_i$.

Notice the following: If $\phi(U) = i$ then U is disjoint from F_i . Also, if $\phi(U) = i$ then either U is disjoint from the vertices $\{a_0, \dots, a_n\}$ of Δ^n or a_i is the sole

vertex of Δ^n which is contained in U. Since \mathscr{U} is a cover of Δ^n , each vertex a_i is contained in some U for which $\phi(U) = i$.

Define

$$A_i = \bigcup_{\phi(U)=i} U.$$

Notice that

$$\bigcup_{i=0}^n A_i = \bigcup_{U \in \mathscr{U}} U = \Delta^n.$$

Notice also that $a_i \in A_i$ and that $A_i \cap F_i = \emptyset$.

We now set out to use Sperner's Lemma:

Let \mathscr{T}_p be the *p*th barycentric subdivision of Δ . To each $x \in \Delta$ assign a label $L(x) = \min\{i | x \in A_i\}$. Notice that $L(a_i) = i$. Also notice that if *x* is on a face of Δ^n which is the convex hull of $\{a_{i_1}, \ldots, a_{i_k}\}$ then $L(x) \in \{i_1, \ldots, i_k\}$. Thus the labelling of \mathscr{T}_p satisfies the hypotheses of Sperner's Lemma. Thus, \mathscr{T}_p contains a completely labelled *n*-simplex Δ_p . Choose $x_p \in \Delta_p$. Since Δ^n is sequentially compact, there is a convergent subsequence of $\{x_p\}$. To conserve notation, call this subsequence $\{x_p\}$ and let $L = \lim\{x_p\}$.

Claim: For each *i*, $L \in A_i$

By the choice of labelling Δ_p has a vertex w_p in A_i . Since diam $(\Delta_p) \rightarrow 0$, lim $w_p = \lim x_p = L$. A_i is the union of finitely many closed sets and so is closed. Thus, $L \in A_i$.

Since $L \in A_i$, there exists $U_i \in \mathscr{U}$ so that $\phi(U_i) = i$. Notice that $U_i \neq U_j$ if $i \neq j$. Thus, *L* is in the intersection of the sets U_0, \ldots, U_n , and so \mathscr{U} has order at least n + 1, as desired.

Theorem 4. The topological dimension of Δ^n is no more than *n*.

Proof. We must show that for all $\varepsilon > 0$, there exists a finite closed cover of Δ^n by sets of diameter less than epsilon which has order n + 1. Such a cover can be constructed using barycentric subdivisions of Δ^n . We will not discuss the details here: look at page 59 in the text or see your class notes.

Corollary 5. The topological dimension of Δ^n is exactly *n*.

Theorem 6 (Invariance of domain). If an open set of \mathbb{R}^m is homeomorphic to an open set of \mathbb{R}^n then m = n.

Proof. Suppose that $U \subset \mathbb{R}^m$ and $V \subset \mathbb{R}^n$ are open sets and that $h: U \to V$ is a homeomorphism. Since U is open, it contains an open ball. Thus,

U contains an *m*-simplex Δ^m . Since *h* is continuous, $h(\Delta^m)$ is a compact set in $V \subset \mathbb{R}^n$. A set in \mathbb{R}^n is compact if and only if it is closed and bounded. Since $h(\Delta^m)$ is bounded, it is contained in a ball $B_r(0)$. Let $e_k = (0, \ldots, 0, r, 0, \ldots, 0)$ with the *k*th coordinate equal to *r*. Let e_0 denote a vector not in $B_r(0)$ which is affinely independent from $\{e_1, \ldots, e_n\}$. Then the convex hull of $\{e_0, \ldots, e_n\}$ is a *n*-simplex Δ^n in \mathbb{R}^n containing $h(\Delta^m)$. By an exercise, the topological dimension of Δ^n is at least the topological dimension of $h(\Delta^m)$. Since topological dimension is a homeomorphism invariant, this shows that $n \ge m$. The argument obtained by switching *n* and *m* in the previous argument shows that $m \ge n$. Thus, m = n.