Final Exam

- This exam is due in Professor Taylor's office on Saturday.
- You may not discuss this exam with anybody other than the professor.
- You may use your textbook, the point-set topology notes, your own course notes, and any other handouts distributed in class or placed on the course webpage.
- Other than those resources listed above, you may not use any other resources in completing this exam. This includes other topology texts and online sources.

1. Point-Set Topology

(1) Before beginning this problem, you may wish to read about the onepoint compactification of a space on page 90 of your text. Let (X, d) be a connected non-compact metric space. Let $x_{0} \in X$ and suppose that X has the property that $B_{r}=\left\{y \in X: d\left(x_{0}, y\right) \leq r\right\}$ is compact for every $r>0$. Let $W_{r}=\{y \in X: d(x, y) \geq r\}$. Notice that W_{r} is closed. Let $\left\{r_{n}\right\}$ be an sequence of real numbers so that $\lim _{n \rightarrow \infty} r_{n}=\infty$. For each r_{n} let $U\left(r_{n}\right)$ be a non-compact connected component of $W_{r_{n}}$. The sequence $\left\{U\left(r_{n}\right)\right\}$ is called a pre-end of X if

$$
U\left(r_{1}\right) \supset U\left(r_{2}\right) \supset U\left(r_{3}\right) \ldots
$$

Suppose that $\left\{r_{n}\right\}$ and $\left\{s_{n}\right\}$ are sequences so that $\left\{U\left(r_{n}\right)\right\}$ and $\left\{U\left(s_{n}\right)\right\}$ are pre-ends of X. Define $\left\{U\left(r_{n}\right)\right\} \sim\left\{U\left(s_{n}\right)\right\}$ iff for every m there exists n with $U\left(s_{m}\right) \supset U\left(r_{n}\right)$.

We will also need the following definition. Define

$$
\stackrel{\circ}{U}\left(r_{n}\right)=U\left(r_{n}\right) \cap\left\{y \in X: d\left(x_{0}, y\right)>r_{n}\right\} .
$$

Notice that although $U\left(r_{n}\right)$ may not be open, $\stackrel{\circ}{U}\left(r_{n}\right)$ is open.
(a) Give an example of a pre-end of the metric space \mathbb{R} with the usual metric.
(b) Prove that \sim is an equivalence relation on the set of pre-ends. Define an end of X to be an equivalence class of pre-ends.
(c) Explain why \mathbb{R}^{n} for $n \geq 2$ has exactly one end and why \mathbb{R} has two ends.
Let J be the collection of ends of X. We will now think of J as a collection of points which are not in X and we will topologize $\widehat{X}=X \cup J$ by defining a generating set for the topology. Let \mathcal{B} consist of sets V such that either $V \subset X$ and V is open or $V=\stackrel{\circ}{U}\left(r_{n}\right) \cup\{u\}$ for some $u \in J$ and some $U\left(r_{n}\right)$ in a preend representing the equivalence class u. Give \widehat{X} the topology generated by \mathcal{B}.
(d) Assume that for all $x \in X$, there exists $\epsilon>0$ so that $\{y \in X$: $d(x, y) \leq \epsilon\}$ is compact. Prove that \widehat{X} is Hausdorff.
(e) Suppose that X has finitely many ends. Let \mathcal{V} be an open cover of \widehat{X} by sets in \mathcal{B}. Prove that \mathcal{V} has a finite subcover of \widehat{X}. (In fact, \widehat{X} is compact, but answering this problem is easier than proving that fact.)
(f) Bonus: Give \widehat{X} / J the quotient topology. Prove that this is homeomorphic to the one-point compactification of X.

2. Problems Concerning Major Theorems Proved in Class

Do three of the following 5 problems.
(1) Let $p=(1,0) \in S^{1} \subset \mathbb{R}^{2}$. In a homework exercise, you proved that given a loop $f: I \rightarrow S^{1}$, based at p, f can be homotoped (without moving the basepoint) to either a constant map or to a map which is monotonic on S^{1}. In order to show that $\pi\left(S^{1}, p\right)$ is isomorphic to \mathbb{Z} it remains to show that no monotonic based loop is homotopic to a constant map. In this problem you will use Sperner's lemma to partially achieve that goal.

Prove the following:
Let $f: I \rightarrow S^{1}$ be the based loop which travels monotonically around S^{1} exactly once in a counterclockwise direction. (That is, $f(s)=(\cos (2 \pi s), \sin (2 \pi s))$. Let f^{k} denote $f \cdot f \cdot \ldots f(k$ times $)$. Prove that if k is odd, then f^{k} is not homotopic to a constant map by a basepoint preserving homotopy.

Hint: Suppose that such a homotopy $F: I \times I \rightarrow S^{1}$ exists. Give S^{1} the triangulation with 3 vertices. Think of $I \times I$ as a square. Triangulate $I \times I$ so that there are no vertices on the interiors of the side or top edges and so that there are $3 k$ vertices on the bottom edge. Use the strong version of the simplicial approximation theorem (Theorem 3.18 in the text) make F "nice" with respect to the triangulations. Call the vertices of S^{1}, w_{0}, w_{1}, and w_{2}. Let $v \in I \times I$ be a vertex. Give v the label i if $F(v)=w_{i}$. Then use Theorem 2.25.
(2) In class we proved the Polygonal Jordan Curve Theorem. Recall the proof. Let $R \subset \mathbb{R}^{2}$ be the square $[0,1] \times[0,1]$. Let $T^{2}=R / \sim$ be the torus resulting from gluing opposite sides of R. Let $q: R \rightarrow T^{2}$ be the quotient map.
(a) Find a non-intersecting polygonal curve $P \subset R$ so that $q(P) \subset$ T^{2} is a closed curve which doesn't intersect itself and is such that $T^{2}-q(P)$ has exactly one connected component.
(b) Give a careful explanation of why the proof of the Polygonal Jordan Curve Theorem does not also show: for every polygonal curve $P \subset R$ with $q(P)$ a non-self-intersecting closed curve, $T^{2}-q(P)$ has exactly two connected components. (In other words, where does the proof of the polygonal Jordan Curve Theorem fail if we try to use it to study curves on a torus?)
(c) Outline a proof of the following theorem: Let \mathcal{T} be a triangulation of \mathbb{R}^{3} with each simplex of \mathcal{T} a geometric simplex (i.e. the convex hull of affinely independent points). Suppose that
$S \subset \mathbb{R}^{3}$ is the union of 2-simplices from \mathcal{T} and suppose that S is homeomorphic to a connected orientable surface. (In fact, it is impossible for S to be homeomorphic to a non-orientable surface.) Then $\mathbb{R}^{3}-S$ has exactly two connected components.
(3) Use the Invariance of Dimension Theorem (Theorem 2.8) to prove that if M is an m-manifold without boundary and if N is an n manifold without boundary and if M is homeomorphic to N then $m=n$. (Recall that by the definition of manifold, if $x \in M$ then there is an open set containing x which is homeomorphic to an open set in \mathbb{R}^{m}.)
(4) In class we proved the Brouwer Fixed Point Theorem. In this problem you will explore what happens when the hypotheses are relaxed.
(a) Let A^{2} denote the annulus. Find a continuous function $f: A^{2} \rightarrow$ A^{2} which has no fixed points.
(b) Find a continuous function $f: S^{2} \rightarrow S^{2}$ which has no fixed points.
(c) Find a non-continuous function $f: D^{2} \rightarrow D^{2}$ which has no fixed points. (D^{2} denotes the closed unit disc.)
(d) Let D denote the open unit disc in \mathbb{R}^{2}. Find a continuous function $f: D \rightarrow D$ without fixed points. (Hint: Recall that D is homeomorphic to \mathbb{R}^{2}.)
(5) Consider the surface S pictured below. Let S_{1} be obtained by gluing a disc to the boundary of S. Let S_{2} be obtained by gluing a Möbius band to the boundary of S. Use the classification of surfaces theorem to identify S_{1} and S_{2} as $S^{2}, n T^{2}$, or $m \mathbb{P}^{2}$ for some n or m.

3. Algebraic Topology

Do three of the following three problems. If you elect not to do a certain problem you may still use it in the other problems, if you wish.
(1) Let X and Y be path connected topological spaces and let $p \in X$ and $q \in Y$. Let $r=(p, q) \in X \times Y$. Prove that $\pi_{1}(X \times Y, r)$ is isomorphic to $\pi_{1}(X, p) \times \pi_{1}(Y, q)$.
(2) Let S be a connected closed orientable surface. Prove that if $\chi(S)<$ 0 then $\pi_{1}(S, p)$ is not abelian. That is, there exists $a, b \in \pi_{1}(S, p)$ such that $a b \neq b a$. You may use the fact that a simple closed curve in a surface is homotopic to a constant loop if and only if it is the boundary of a disc in the surface.
(3) Let S and T each be a connected closed surface and suppose that $f: S \rightarrow T$ is a continous map. We say that f is incompressible if $f_{*}: \pi_{1}(S, p) \rightarrow \pi_{1}(T, f(p))$ is injective.
(a) Suppose that S is a 2 -sphere. Prove that f is incompressible.
(b) Suppose that S is the projective plane and that f is incompressible. Prove that T is non-orientable. You may use the fact that if T is an orientable surface, then no non-trivial element has finite order. That is, if T is orientable and if g is a based loop in T which is not homotopic (by a basepoint preserving homotopy) to a constant map then $g^{n}=g \cdot g \cdot g \ldots \cdot g$ is not homotopic (by a basepoint preserving homotopy) to a constant map.
(c) Suppose that T is the torus, that S is orientable, and that f is incompressible. Prove that S is either the torus or the 2 -sphere
(4) Let S be a surface and recall that a continuous function $f: S \rightarrow S$ induces a homomorphism $f_{*}: \pi_{1}\left(S, x_{0}\right) \rightarrow \pi_{1}\left(S, x_{0}\right)$. It is a fact that if two orientation preserving maps induce the same homomorphisms on $\pi_{1}\left(S, x_{0}\right)$ then the maps are homotopic. (This is not necessarily true if we work with topological spaces other than surfaces.)
(a) Prove that if $f: S \rightarrow S$ is a homeomorphism then f_{*} is an isomorphism. (Hint: Consider the map induced by the homeomorphism $f \circ f^{-1}$.)
(b) Using the fact mentioned above, prove that a $2-$ sphere has exactly one orientation-preserving homeomorphism, up to homotopy.
(c) Using the fact mentioned above, explain why orientation preserving homeomorphisms of the torus T^{2} to itself can be classified (up to homotopy) by 2×2 matrices with integer entries whose inverse matrices also have integer entries.
(5) Let X be a topological space and suppose that $A \subset X$. A retraction $r: X \rightarrow A$ is a continuous map such that $r(a)=a$ for all $a \in A$. A deformation retraction of X onto A is a retraction $r: X \rightarrow A$ such that there exists a homotopy $R: X \times I \rightarrow X$ such that for all $x \in X, a \in A$, and $t \in I, R(x, 0)=x, R(x, 1)=r(x)$ and $R(a, t)=a$. Suppose that there exists a deformation retraction of X onto A. Let $i: A \rightarrow X$ be the inclusion map. (I.e. $i(a)=a$.). Prove that

$$
i_{*}: \pi_{1}\left(A, a_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)
$$

is an isomorphism. Use this to prove that if S is a surface then S and $S \times I$ have the same fundamental group.

