
Final Exam

• This exam is due in Professor Taylor’s office on Saturday.
• You may not discuss this exam with anybody other than the profes-

sor.
• You may use your textbook, the point-set topology notes, your own

course notes, and any other handouts distributed in class or placed
on the course webpage.
• Other than those resources listed above, you may not use any other

resources in completing this exam. This includes other topology
texts and online sources.
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1. POINT-SET TOPOLOGY

(1) Before beginning this problem, you may wish to read about the one-
point compactification of a space on page 90 of your text. Let (X, d)
be a connected non-compact metric space. Let x0 ∈ X and suppose
that X has the property that Br = {y ∈ X : d(x0, y) ≤ r} is
compact for every r > 0. Let Wr = {y ∈ X : d(x, y) ≥ r}.
Notice that Wr is closed. Let {rn} be an sequence of real numbers
so that limn→∞ rn = ∞. For each rn let U(rn) be a non-compact
connected component of Wrn . The sequence {U(rn)} is called a
pre-end of X if

U(r1) ⊃ U(r2) ⊃ U(r3) . . .

Suppose that {rn} and {sn} are sequences so that {U(rn)} and
{U(sn)} are pre-ends of X . Define {U(rn)} ∼ {U(sn)} iff for
every m there exists n with U(sm) ⊃ U(rn).

We will also need the following definition. Define

Ů(rn) = U(rn) ∩ {y ∈ X : d(x0, y) > rn}.

Notice that although U(rn) may not be open, Ů(rn) is open.
(a) Give an example of a pre-end of the metric space R with the

usual metric.
(b) Prove that ∼ is an equivalence relation on the set of pre-ends.

Define an end of X to be an equivalence class of pre-ends.
(c) Explain why Rn for n ≥ 2 has exactly one end and why R has

two ends.
Let J be the collection of ends of X . We will now think of J as
a collection of points which are not inX and we will topologize
X̂ = X ∪ J by defining a generating set for the topology. Let
B consist of sets V such that either V ⊂ X and V is open or
V = Ů(rn) ∪ {u} for some u ∈ J and some U(rn) in a pre-
end representing the equivalence class u. Give X̂ the topology
generated by B.

(d) Assume that for all x ∈ X , there exists ε > 0 so that {y ∈ X :

d(x, y) ≤ ε} is compact. Prove that X̂ is Hausdorff.
(e) Suppose that X has finitely many ends. Let V be an open cover

of X̂ by sets in B. Prove that V has a finite subcover of X̂ . (In
fact, X̂ is compact, but answering this problem is easier than
proving that fact.)

(f) Bonus: Give X̂/J the quotient topology. Prove that this is
homeomorphic to the one-point compactification of X .
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2. PROBLEMS CONCERNING MAJOR THEOREMS PROVED IN CLASS

Do three of the following 5 problems.

(1) Let p = (1, 0) ∈ S1 ⊂ R2. In a homework exercise, you proved that
given a loop f : I → S1, based at p, f can be homotoped (without
moving the basepoint) to either a constant map or to a map which
is monotonic on S1. In order to show that π(S1, p) is isomorphic
to Z it remains to show that no monotonic based loop is homotopic
to a constant map. In this problem you will use Sperner’s lemma to
partially achieve that goal.

Prove the following:
Let f : I → S1 be the based loop which travels monotonically
around S1 exactly once in a counterclockwise direction. (That is,
f(s) = (cos(2πs), sin(2πs)). Let fk denote f · f · . . . f (k times).
Prove that if k is odd, then fk is not homotopic to a constant map
by a basepoint preserving homotopy.

Hint: Suppose that such a homotopy F : I×I → S1 exists. Give
S1 the triangulation with 3 vertices. Think of I × I as a square.
Triangulate I × I so that there are no vertices on the interiors of
the side or top edges and so that there are 3k vertices on the bot-
tom edge. Use the strong version of the simplicial approximation
theorem (Theorem 3.18 in the text) make F “nice” with respect to
the triangulations. Call the vertices of S1, w0, w1, and w2. Let
v ∈ I × I be a vertex. Give v the label i if F (v) = wi. Then use
Theorem 2.25.

(2) In class we proved the Polygonal Jordan Curve Theorem. Recall the
proof. Let R ⊂ R2 be the square [0, 1] × [0, 1]. Let T 2 = R/∼ be
the torus resulting from gluing opposite sides of R. Let q : R→ T 2

be the quotient map.
(a) Find a non-intersecting polygonal curve P ⊂ R so that q(P ) ⊂

T 2 is a closed curve which doesn’t intersect itself and is such
that T 2 − q(P ) has exactly one connected component.

(b) Give a careful explanation of why the proof of the Polygonal
Jordan Curve Theorem does not also show: for every polygonal
curve P ⊂ R with q(P ) a non-self-intersecting closed curve,
T 2 − q(P ) has exactly two connected components. (In other
words, where does the proof of the polygonal Jordan Curve
Theorem fail if we try to use it to study curves on a torus?)

(c) Outline a proof of the following theorem: Let T be a triangu-
lation of R3 with each simplex of T a geometric simplex (i.e.
the convex hull of affinely independent points). Suppose that
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S ⊂ R3 is the union of 2-simplices from T and suppose that
S is homeomorphic to a connected orientable surface. (In fact,
it is impossible for S to be homeomorphic to a non-orientable
surface.) Then R3 − S has exactly two connected components.

(3) Use the Invariance of Dimension Theorem (Theorem 2.8) to prove
that if M is an m-manifold without boundary and if N is an n-
manifold without boundary and if M is homeomorphic to N then
m = n. (Recall that by the definition of manifold, if x ∈ M then
there is an open set containing x which is homeomorphic to an open
set in Rm.)

(4) In class we proved the Brouwer Fixed Point Theorem. In this prob-
lem you will explore what happens when the hypotheses are relaxed.
(a) LetA2 denote the annulus. Find a continuous function f : A2 →

A2 which has no fixed points.
(b) Find a continuous function f : S2 → S2 which has no fixed

points.
(c) Find a non-continuous function f : D2 → D2 which has no

fixed points. (D2 denotes the closed unit disc.)
(d) Let D̊ denote the open unit disc in R2. Find a continuous func-

tion f : D̊ → D̊ without fixed points. (Hint: Recall that D̊ is
homeomorphic to R2.)

(5) Consider the surface S pictured below. Let S1 be obtained by glu-
ing a disc to the boundary of S. Let S2 be obtained by gluing a
Möbius band to the boundary of S. Use the classification of sur-
faces theorem to identify S1 and S2 as S2, nT 2, or mP2 for some n
or m.
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3. ALGEBRAIC TOPOLOGY

Do three of the following three problems. If you elect not to do a certain
problem you may still use it in the other problems, if you wish.

(1) Let X and Y be path connected topological spaces and let p ∈ X
and q ∈ Y . Let r = (p, q) ∈ X × Y . Prove that π1(X × Y, r) is
isomorphic to π1(X, p)× π1(Y, q).

(2) Let S be a connected closed orientable surface. Prove that if χ(S) <
0 then π1(S, p) is not abelian. That is, there exists a, b ∈ π1(S, p)
such that ab 6= ba. You may use the fact that a simple closed curve
in a surface is homotopic to a constant loop if and only if it is the
boundary of a disc in the surface.

(3) Let S and T each be a connected closed surface and suppose that
f : S → T is a continous map. We say that f is incompressible if
f∗ : π1(S, p)→ π1(T, f(p)) is injective.
(a) Suppose that S is a 2–sphere. Prove that f is incompressible.
(b) Suppose that S is the projective plane and that f is incompress-

ible. Prove that T is non-orientable. You may use the fact that
if T is an orientable surface, then no non-trivial element has
finite order. That is, if T is orientable and if g is a based loop
in T which is not homotopic (by a basepoint preserving homo-
topy) to a constant map then gn = g ·g ·g . . .·g is not homotopic
(by a basepoint preserving homotopy) to a constant map.

(c) Suppose that T is the torus, that S is orientable, and that f is
incompressible. Prove that S is either the torus or the 2–sphere

(4) Let S be a surface and recall that a continuous function f : S → S
induces a homomorphism f∗ : π1(S, x0) → π1(S, x0). It is a fact
that if two orientation preserving maps induce the same homomor-
phisms on π1(S, x0) then the maps are homotopic. (This is not nec-
essarily true if we work with topological spaces other than surfaces.)
(a) Prove that if f : S → S is a homeomorphism then f∗ is an

isomorphism. (Hint: Consider the map induced by the homeo-
morphism f ◦ f−1.)

(b) Using the fact mentioned above, prove that a 2–sphere has ex-
actly one orientation-preserving homeomorphism, up to homo-
topy.

(c) Using the fact mentioned above, explain why orientation pre-
serving homeomorphisms of the torus T 2 to itself can be clas-
sified (up to homotopy) by 2 × 2 matrices with integer entries
whose inverse matrices also have integer entries.
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(5) Let X be a topological space and suppose that A ⊂ X . A retraction
r : X → A is a continuous map such that r(a) = a for all a ∈ A.
A deformation retraction of X onto A is a retraction r : X → A
such that there exists a homotopy R : X × I → X such that for
all x ∈ X , a ∈ A, and t ∈ I , R(x, 0) = x, R(x, 1) = r(x) and
R(a, t) = a. Suppose that there exists a deformation retraction of
X onto A. Let i : A → X be the inclusion map. (I.e. i(a) = a.).
Prove that

i∗ : π1(A, a0)→ π1(X, x0)

is an isomorphism. Use this to prove that if S is a surface then S
and S × I have the same fundamental group.


