Exercise 2.14

Scott Taylor
Colby College
Spring 2009

Theorem. The n-cube $J^{n}=\times_{i=1}^{n}[-1,1]$ is homeomorphic to the n-ball B^{n}.
Proof. Notice that since \mathbb{R}^{n} has the product topology and since $J^{n} \subset \mathbb{R}^{n}$, the product topology on J^{n} coincides with the subspace topology on J^{n}. For a vector $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ let $\|x\|$ denote the usual norm

$$
\|x\|=\left(\sum x_{i}^{2}\right)^{1 / 2}
$$

Notice that $\|\cdot\|: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a continuous function. Let d denote the usual distance function on \mathbb{R}^{n}. That is, $d(x, z)=\|x-z\|$.

Define the function

$$
|\cdot|: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

by

$$
|x|=\left(\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right) .
$$

Lemma 1. The function $|\cdot|$ is continuous.
Proof of Lemma. Let $\varepsilon>0$ be given. We desire to show that there exists $\delta>0$ such that if $z \in B_{\delta}(x) \subset \mathbb{R}^{n}$ then $|z| \in B_{\varepsilon}(|x|) \subset \mathbb{R}^{n}$. Since the absolute value function from $\mathbb{R} \rightarrow \mathbb{R}$ is continuous, for each i there exists δ_{i} so that $\left|x_{i}-z_{i}\right|<\delta_{i}$ then $\left|\left|x_{i}\right|-\left|z_{i}\right|\right|<\varepsilon / n$. Let $\delta=\min \delta_{i}$. Assume that $d(x, z)<\delta$. Then,
$d(|x|,|z|)=\sqrt{\sum\left(\left|x_{i}\right|-\left|z_{i}\right|\right)^{2}} \leq \sum \sqrt{\left(\left|x_{i}\right|-\left|z_{i}\right|\right)^{2}}=\sum| | x_{i}\left|-\left|z_{i}\right|\right|<\sum \varepsilon / n=\varepsilon$.
Hence, if $z \in B_{\delta}(x)$ then $|z| \in B_{\mathcal{\varepsilon}}(|x|)$.
Now define the function max: $\mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
\max (x)=\max \left\{x_{1}, \ldots, x_{n}\right\} .
$$

(Recall that $x=\left(x_{1}, \ldots, x_{n}\right)$.)
Lemma 2. The function max is continuous.
Proof of Lemma. Let $x \in \mathbb{R}^{n}$ and $\varepsilon>0$. We must show that there exists $\delta>0$ so that if $d(x, z)<\delta$ then $\max (z) \in B_{\mathcal{\varepsilon}}(\max x) \subset \mathbb{R}$. Suppose that
$\max (x)=x_{j}$. Let $\delta=\varepsilon$. Suppose $d(x, z)<\delta$. Let $z_{p}=\max (z)$. Notice that, for all $i,\left|x_{i}-z_{i}\right|<\delta$. This implies that, for all i,

$$
x_{i}-\delta<z_{i}<x_{i}+\delta
$$

Now for each i,

$$
z_{i}<x_{i}+\delta \leq x_{j}+\varepsilon
$$

by the definition of δ. In particular, $z_{p} \leq x_{j}+\varepsilon$.
Also,

$$
x_{j}-\varepsilon=x_{j}-\delta<z_{j} \leq z_{p}
$$

since $z_{p}=\max (z)$. Thus,

$$
x_{j}-\varepsilon<z_{p}<x_{j}+\varepsilon .
$$

In other words, $\max (z) \in B_{\varepsilon}(x) \subset \mathbb{R}$.
Define $\|\left. x\right|_{s}=\max (|x|)$. Since $\|\cdot\|_{s}$ is the composition of two continuous functions, it is continuous. (Notice that $d_{\text {sup }}(x, y)=\|x-y\|_{s}$. We won't use this fact.)

Notice that for a fixed k the set $\left\{x:\|x\|_{s}=k\right\}$ is a hollow n-cube centered at the origin. The distance between opposite faces is $2 k$.

Define $h: J^{n} \rightarrow B^{n}$ by

$$
h(x)=\left\{\begin{array}{cc}
0 & \text { if } x=0 \in \mathbb{R}^{n} \\
\frac{\|x\|_{s}}{\|x\|} x & \text { if } x \neq 0
\end{array}\right.
$$

Define $k: B^{n} \rightarrow J^{n}$ by

$$
k(x)=\left\{\begin{array}{cc}
0 & \text { if } x=0 \in \mathbb{R}^{n} \\
\frac{\|x\|^{\prime}}{\|x\|_{s}} x & \text { if } x \neq 0
\end{array}\right.
$$

You can check that, as functions from \mathbb{R}^{n} to \mathbb{R}^{n}, h and k are inverse functions. Consequently, they are injective. We now show that h is surjective onto B^{n}. Let $y \in B^{n}$ and suppose that $\|y\|=k$. Let $x \in J^{n}$ and suppose that $\|x\|_{s}=k$. Choose x so that x and y are on the same ray based at the origin. If $y=0$ then $x=0$. Suppose that $y \neq 0$. Then

$$
h(x)=\frac{\|x\|_{s}}{\|x\|} x
$$

The vector $x /\|x\|$ is on the sphere of radius 1 . Thus, $h(x)$ is on the sphere of radius $\|x\|_{s}=k$. Since x and $h(x)$ are on the same ray based at 0 , and x and y are on the same ray based at 0 , and $h(x)$ and y are both on the sphere of radius k, we must have $h(x)=y$. Thus, h is surjective onto B^{n}.

Since h and k are inverses, k is surjective onto J^{n}.
We still need to show that h and k are continuous. We will do this for h. The argument for k is similar. Let $\varepsilon>0$ and $x \in J^{n}$ be given. We must show that there exists a $\delta>0$ so that if $z \in B_{\delta}(x) \cap J^{n}$ then $h(z) \in B_{\varepsilon}(h(x)) \cap B^{n}$. If $x \neq 0$, the existence of such a δ follows immediately from the continuity of the formula used to define h. So suppose that $x=0$. Let $\delta=\varepsilon / n$. Assume that $d(x, z)<\delta$. If $z=0$, it is clear that $z \in B_{\varepsilon}(x)$. So suppose that $z \neq 0$. Then,

$$
d(x, z)=d(0, z)=\|z\|<\delta .
$$

Also,

$$
d(h(x), h(z))=d(0, h(z))=\|h(z)\|=\frac{\|z\|_{s}}{\|z\|}\|z\|=\|z\|_{s} .
$$

Now,

$$
\|z\|_{s}=\max _{i}\left\{\left|z_{i}\right|\right\} \leq \sum\left|z_{i}\right| \leq \sum_{i}\|z| |=n\| z \|<n \delta=\varepsilon .
$$

Thus, If $d(x, z)<\delta$ then $d(h(x), h(z))<\varepsilon$ implying that h is continuous.
A similar argument shows that k is continuous. Since h and k are inverses, B^{n} and J^{n} are homeomorphic.

