Exercise 2.14 Scott Taylor Colby College Spring 2009

Theorem. The *n*-cube $J^n = \times_{i=1}^n [-1, 1]$ is homeomorphic to the *n*-ball B^n .

Proof. Notice that since \mathbb{R}^n has the product topology and since $J^n \subset \mathbb{R}^n$, the product topology on J^n coincides with the subspace topology on J^n . For a vector $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ let ||x|| denote the usual norm

$$||x|| = \left(\sum x_i^2\right)^{1/2}.$$

Notice that $|| \cdot || : \mathbb{R}^n \to \mathbb{R}$ is a continuous function. Let *d* denote the usual distance function on \mathbb{R}^n . That is, d(x, z) = ||x - z||.

Define the function

$$|\cdot|: \mathbb{R}^n \to \mathbb{R}^n$$

by

 $|x| = (|x_1|, |x_2|, \dots, |x_n|).$

Lemma 1. The function $|\cdot|$ is continuous.

Proof of Lemma. Let $\varepsilon > 0$ be given. We desire to show that there exists $\delta > 0$ such that if $z \in B_{\delta}(x) \subset \mathbb{R}^n$ then $|z| \in B_{\varepsilon}(|x|) \subset \mathbb{R}^n$. Since the absolute value function from $\mathbb{R} \to \mathbb{R}$ is continuous, for each *i* there exists δ_i so that $|x_i - z_i| < \delta_i$ then $||x_i| - |z_i|| < \varepsilon/n$. Let $\delta = \min \delta_i$. Assume that $d(x, z) < \delta$. Then,

$$d(|x|,|z|) = \sqrt{\sum(|x_i| - |z_i|)^2} \le \sum \sqrt{(|x_i| - |z_i|)^2} = \sum ||x_i| - |z_i|| < \sum \varepsilon/n = \varepsilon$$

Hence, if $z \in B_{\delta}(x)$ then $|z| \in B_{\varepsilon}(|x|)$.

Now define the function max : $\mathbb{R}^n \to \mathbb{R}$ by

$$\max(x) = \max\{x_1, \ldots, x_n\}.$$

(Recall that $x = (x_1, \ldots, x_n)$.)

Lemma 2. The function max is continuous.

Proof of Lemma. Let $x \in \mathbb{R}^n$ and $\varepsilon > 0$. We must show that there exists $\delta > 0$ so that if $d(x,z) < \delta$ then $\max(z) \in B_{\varepsilon}(\max x) \subset \mathbb{R}$. Suppose that

 $\max(x) = x_j$. Let $\delta = \varepsilon$. Suppose $d(x,z) < \delta$. Let $z_p = \max(z)$. Notice that, for all i, $|x_i - z_i| < \delta$. This implies that, for all i,

$$x_i - \delta < z_i < x_i + \delta$$
.

Now for each *i*,

$$z_i < x_i + \delta \leq x_j + \varepsilon$$

by the definition of δ . In particular, $z_p \leq x_j + \varepsilon$.

Also,

$$x_j - \varepsilon = x_j - \delta < z_j \le z_p$$

since $z_p = \max(z)$. Thus,

$$x_j - \varepsilon < z_p < x_j + \varepsilon.$$

In other words, $\max(z) \in B_{\mathcal{E}}(x) \subset \mathbb{R}$.

Define $||x||_s = \max(|x|)$. Since $||\cdot||_s$ is the composition of two continuous functions, it is continuous. (Notice that $d_{\sup}(x,y) = ||x-y||_s$. We won't use this fact.)

Notice that for a fixed k the set $\{x : ||x||_s = k\}$ is a hollow *n*-cube centered at the origin. The distance between opposite faces is 2k.

Define $h: J^n \to B^n$ by

$$h(x) = \begin{cases} 0 & \text{if } x = 0 \in \mathbb{R}^n \\ \frac{||x||_s}{||x||} x & \text{if } x \neq 0 \end{cases}$$

Define $k: B^n \to J^n$ by

$$k(x) = \begin{cases} 0 & \text{if } x = 0 \in \mathbb{R}^n \\ \frac{||x||}{||x||_s} x & \text{if } x \neq 0 \end{cases}$$

You can check that, as functions from \mathbb{R}^n to \mathbb{R}^n , *h* and *k* are inverse functions. Consequently, they are injective. We now show that *h* is surjective onto B^n . Let $y \in B^n$ and suppose that ||y|| = k. Let $x \in J^n$ and suppose that $||x||_s = k$. Choose *x* so that *x* and *y* are on the same ray based at the origin. If y = 0 then x = 0. Suppose that $y \neq 0$. Then

$$h(x) = \frac{||x||_s}{||x||}x.$$

The vector x/||x|| is on the sphere of radius 1. Thus, h(x) is on the sphere of radius $||x||_s = k$. Since x and h(x) are on the same ray based at 0, and x and y are on the same ray based at 0, and h(x) and y are both on the sphere of radius k, we must have h(x) = y. Thus, h is surjective onto B^n .

Since *h* and *k* are inverses, *k* is surjective onto J^n .

We still need to show that *h* and *k* are continuous. We will do this for *h*. The argument for *k* is similar. Let $\varepsilon > 0$ and $x \in J^n$ be given. We must show that there exists a $\delta > 0$ so that if $z \in B_{\delta}(x) \cap J^n$ then $h(z) \in B_{\varepsilon}(h(x)) \cap B^n$. If $x \neq 0$, the existence of such a δ follows immediately from the continuity of the formula used to define *h*. So suppose that x = 0. Let $\delta = \varepsilon/n$. Assume that $d(x,z) < \delta$. If z = 0, it is clear that $z \in B_{\varepsilon}(x)$. So suppose that $z \neq 0$. Then,

$$d(x,z) = d(0,z) = ||z|| < \delta.$$

Also,

$$d(h(x),h(z)) = d(0,h(z)) = ||h(z)|| = \frac{||z||_s}{||z||} ||z|| = ||z||_s.$$

Now,

$$||z||_s = \max_i \{|z_i|\} \le \sum_i |z_i| \le \sum_i ||z|| = n||z|| < n\delta = \varepsilon.$$

Thus, If $d(x,z) < \delta$ then $d(h(x),h(z)) < \varepsilon$ implying that *h* is continuous.

A similar argument shows that k is continuous. Since h and k are inverses, B^n and J^n are homeomorphic.