Topology Exam 1 Study Guide

(A.) Know precise definitions of the following term	ns
topology	topological space
metric	base for a topology
metric space	generating set for a topology
continuous	homeomorphism
subspace topology	product topology
equivalence relation	group
quotient topology	Hausdorff
connected	path connected
cover	compact
limit point of a sequence	limit point of a set
sequentially continuous	sequentially compact
Lebesgue Number of an open cover	order of a finite closed cover
affine subspace	affinely independent
topological dimension	<i>n</i> -dimensional simplex

- (B.) Be able to answer questions about the following theorems. I will not ask you for complete proofs:
 - (a) The product of two compact spaces is compact. (What is an outline of the proof?)
 - (b) The Extreme Value Theorem. (What are the main ideas of the proof?)
 - (c) Jordan Curve Theorem. (What is the statement? What functions are useful in proving the theorem? How do you prove those functions are well-defined, continuous, etc.?)
 - (d) Sperner's Lemma. (What is the statement? What theorems are useful in proving it?)
 - (e) Invariance of Dimension. (What is the statement? What is an outline of the proof? What are the main ideas used in each step?)
- (C.) Be able to give correct proofs of the following result. I will not ask you to prove anything not on this list.
 - (a) Suppose that X, Y and Z are topological spaces and that $h: Y \to Z$, $f: X \to Y$, $g: X \to Z$ are functions with $g = h \circ f$. Suppose that g is continuous and that f is open. Prove that h is continuous.
 - (b) "Crushing" is an equivalence relation.
 - (c) A topological space X has at least n connected components if and only if there exists a continuous surjective function of X onto a discrete space with n points.

- (d) If *X* is path-connected then it is connected.
- (e) If X is a closed and bounded subset of \mathbb{R}^n then X is compact. You may use the fact that [0,1] is compact and that the product of compact spaces is compact.
- (f) Suppose that X is a metric space and that $A \subset X$. Prove that \overline{A} is the smallest closed set in X containing A.
- (g) Let $M_n(\mathbb{R})$ denote the set of $n \times n$ matrices with real entries. Give $M_n(\mathbb{R})$ the usual topology on \mathbb{R}^{n^2} . You may use the fact that the determinant function (being a polynomial) is continuous.
 - (i) *GL_n*(ℝ), the set of invertible *n* × *n* matrices, is an open subset of *M_n*(ℝ).
 - (ii) (Bonus:) Let A be an invertible n × n matrix. There exists
 ε > 0 so that if B is an n × n matrix such that if, for all 1 ≤ i, j ≤ n,

$$|B_{ij}-A_{ij}|<\varepsilon$$

then *B* is invertible.

- (iii) $SL_n(\mathbb{R})$, the set of $n \times n$ matrices with determinant 1 is a closed subset of $M_n(\mathbb{R})$.
- (iv) $GL_n(\mathbb{R})$ is not connected.
- (h) Suppose that X is a compact metric space and that $A \subset X$ is compact. Then the topological dimension of A is no more than the topological dimension of X.
- (i) Let \sim be an equivalence relation on *X*. Let $f: X \to X/\sim$ be the quotient map. Then *f* is continuous and open.
- (j) Suppose that X is compact and that \sim is an equivalence relation on X. Then X/\sim is compact.
- (k) Suppose that X is a topological space with infinitely many connected components. Then X is not compact.