Lecture Notes from February 25, 2009

Lemma 1. Let $(X, \mathbb{X}),(Y, \mathbb{Y})$, and (Z, \mathbb{Z}) be topological spaces and suppose that

$$
f: X \rightarrow Y \quad \text { and } \quad g: X \rightarrow Z
$$

are continuous. Also suppose that f is an open function and that $h: Y \rightarrow Z$ is a function such that

$$
g=h \circ f
$$

Then h is continuous.
Recall that a function is open if the image of every open set is open.
Proof. Let $U \subset Z$ be open. We need to show that $h^{-1}(U)$ is open. Since g is continuous, $g^{-1}(U)$ is open. Since f is an open function, $f\left(g^{-1}\right)(U)$ is open. Since $g=h \circ f, h^{-1}(U)=f\left(g^{-1}(U)\right)$. Thus, $h^{-1}(U)$ is open.

Lemma 2. Let X be a topological space and let \sim be an equivalence relation on X. Let $f: X \rightarrow X / \sim$ be the quotient function defined by

$$
f(x)=[x] .
$$

If X / \sim is given the quotient topology, then f is an open function.
Proof. Let $U \subset X$ be an open set. The quotient topology on X / \sim consists of all sets $V \subset X / \sim$ such that $f^{-1}(V)$ is open. Since $f^{-1}(f(U))=U$, the set $f(U)$ is open. Hence, f is an open function.
Lemma 3. For each $i \in\{1, \ldots, n\}$ let X_{i} and Y_{i} be topological spaces and let $f_{i}: X_{i} \rightarrow Y_{i}$ be a continuous function. Then the function

$$
f=\times_{i=1}^{n} f_{i}: \times_{i=1}^{n} X_{i} \rightarrow \times_{i=1}^{n} Y_{i}
$$

defined by

$$
f\left(\left(x_{1}, \ldots, x_{n}\right)\right)=\left(f_{1}\left(x_{1}\right), \ldots, f_{n}\left(x_{n}\right)\right)
$$

is continuous.
Proof. Sets of the form $\times_{i=1}^{n} V_{i}$ with $V_{i} \subset Y_{i}$ open form a base for the product topology on $\times_{i=1}^{n} Y_{i}$. It, therefore, suffices to check that for each such set

$$
f^{-1}\left(\times_{i=1}^{n} V_{i}\right)
$$

is open. Notice that

$$
f^{-1}\left(\times_{i=1}^{n} V_{i}\right)=\times_{i=1}^{n} f_{i}^{-1}\left(V_{i}\right)
$$

Since each f_{i} is continuous, by the definition of the product topology $f^{-1}\left(\times_{i=1}^{n} V_{i}\right)$ is open.

Corollary 4. Let X, Y_{1}, and Y_{2} be topological spaces and let $f_{1}: X \rightarrow Y_{1}$ and $f_{2}: X \rightarrow Y_{2}$ be continuous functions. Then $f: X \rightarrow Y_{1} \times Y_{2}$ defined by

$$
f(x)=\left(f_{1}(x), f_{2}(x)\right)
$$

is continuous.
Proof. Define $i: X \rightarrow X \times X$ by $i(x)=(x, x)$. Notice that i is continuous. The function f is equal to $\left(f_{1} \times f_{2}\right) \circ i$. Since it is the composition of two continuous functions, it is continuous.
Theorem 5. The topological space $[0,2 \pi] /\{0,2 \pi\}$ is homeomorphic to S^{1}.
Proof. Define $g:[0,2 \pi] \rightarrow S^{1} \subset \mathbb{R}^{2}$ by

$$
g(x)=((\cos x, \sin x))
$$

By Corollary $4, g$ is continuous. Let $S=[0,2 \pi] /\{0,2 \pi\}$. And let $f:[0,2 \pi] \rightarrow$ S be the quotient map. By Lemma $2 f$ is continuous and open. Define $h: S \rightarrow S^{1}$ by

$$
h([x])=(\cos x, \sin x) .
$$

If $[x] \in S$ then either $[x]=\{x\}$ or $[x]=\{0,2 \pi\}$. Since $(\cos 0, \sin 0)=$ $(\cos 2 \pi, \sin 2 \pi)$ the function h is well-defined. Also, since

$$
h^{-1}((\cos x, \sin x))=\{x\} \text { or }\{0,2 \pi\}=[0]
$$

the function h is injective. It is also easy to see it is surjective.
The function h is continuous by Lemma 1. It remains to show that h^{-1} is continuous.
Notice that if an open set $U \subset[0,2 \pi]$ contains both 0 and 2π, then $g(U) \subset S^{1}$ is open. Also note that if $U \subset[0,2 \pi]$ is an open set which contains neither 0 nor 2π, then $g(U)$ is open. To show that h^{-1} is continuous, we will mimic the proof of Lemma 1. Let $U \subset S$ be an open set. We need to show that $h^{-1}(U)$ is open. Notice that $h^{-1}(U)=g\left(f^{-1}(U)\right)$. Since f is continuous, $f^{-1}(U)$ is an open set in $[0,2 \pi]$. Furthermore, $f^{-1}(U)$ is an open set with contains either both 0 and 2π or neither 0 and 2π. Thus, $g\left(f^{-1}(U)\right)$ is open in S^{1}. Hence, h^{-1} is continuous.
Corollary 6. Let $S=[0,2 \pi] /\{0,2 \pi\}$. Then $S \times S$ is homeomorphic to $T^{2}=$ $S^{1} \times S^{1}$.

Proof. Let $h: S \rightarrow S^{1}$ be a homeomorphism. Then $h \times h: S \times S \rightarrow T^{2}$ will also be a homeomorphism.

