Theorems on Compactness

These statements and proofs are based on theorems from Bredon's *Topology and Geometry*.

We begin by proving that the space [0,1] is compact.

Theorem 1. With the subspace topology, $[0,1] \subset \mathbb{R}$ is compact

Proof. Let \mathscr{U} be an open cover of [0,1]. Define

 $S = \{s \in [0,1] : \text{ there is a finite subset of } \mathscr{U} \text{ which covers } [0,s] \}.$

Let *b* be the least upper bound for *S*.

Claim : S = [0, b) or S = [0, b]

To see this, suppose that $s \in S$. Let \mathscr{U}' be a finite subset of \mathscr{U} which covers [0,s]. Then for all s' < s, \mathscr{U}' also covers [0,s']. Hence, if $s \in S$, then $[0,s] \subset S$.

Claim: S = [0, b].

Suppose not; that is, suppose that S = [0,b). Since \mathscr{U} is an open cover of [0,1], there exists an open set $U \in \mathscr{U}$ so that $b \in \mathscr{U}$. Since U is an open set in [0,1], there exists $\varepsilon > 0$ so that the interval $(b - \varepsilon, b]$ is a subset of U. Since b is the least upper bound for S, the number $b - \varepsilon/2$ is contained in S. Let \mathscr{U}' be a finite subset of \mathscr{U} which covers $[0, b - \varepsilon/2]$. Then $\mathscr{U}' \cup \{U\}$ is a finite subset of U' which covers [0, b]. Hence, $b \in S$ and so, S = [0, b]. \Box

Claim: S = [0,1]. Suppose not. That is, suppose that b < 1. Let \mathscr{U}' be a finite subset of \mathscr{U} which covers S = [0,b]. Since each set of \mathscr{U} is open in [0,1], there exists a set $U \in \mathscr{U}$ so that $b \in U$. Since U is open and since b < 1, there exists $\varepsilon > 0$ so that $(b, b + \varepsilon) \subset U$. Thus, \mathscr{U}' is a finite subset of \mathscr{U} which covers $[0, b + \varepsilon/2]$. This implies that $b + \varepsilon/2 \in S$. But, b is the least upperbound for S and so this is impossible.

Thus, [0,1] is compact.

Lemma 2. If *X* is compact and if $A \subset X$ is closed, then *A* is compact.

Proof. Let \mathscr{U} be an open cover of A. Since $A \subset X$ is compact, X - A is open. Thus, $\mathscr{U} \cup \{X - A\}$ is an open cover of X. Since X is compact, there exists a finite subcover. Let \mathscr{U}' be that finite subcover minus the set X - A, if X - A was in that subcover. Then \mathscr{U}' is a finite subcover of \mathscr{U} which covers A. Hence, A is compact.

We now proceed to show that the product of two compact spaces is compact.

Definition 3. If Z and Y are compact topological spaces and if $f: Z \to Y$ is a function then f is **proper**, if for each compact set $C \subset Y$, $f^{-1}(C)$ is compact. The function f is **open**, if for each open set $U \subset Z$, the set f(U) is open in Y.

Lemma 4. Suppose that *Z* and *Y* are topological spaces and that $f: Z \to Y$ is an open function. Suppose that for each $y \in Y$, $f^{-1}(y)$ is compact in *X*. Then *f* is a proper function.

Proof. Let $C \subset Y$ be compact. We wish to show that $f^{-1}(C)$ is compact in *Z*. Let $\{U_{\alpha} : \alpha \in A\}$ be an open cover, with *A* an index set. For each $y \in C$, $f^{-1}(y)$ is compact. Let $A_y \subset A$ be a finite subset so that $\{U_{\alpha} : \alpha \in A_y\}$ is a finite cover of $f^{-1}(y)$. Since each U_{α} is open, the set

$$W_y = igcup_{lpha \in A_y} U_{lpha}$$

is open in Z.

Since f is an open function, the image of a closed set is closed. Hence, $f(Z - W_v)$ is a closed set in Y. Thus,

$$V_{\rm y} = Y - f(Z - W_{\rm y})$$

is an open set in Y.

Claim: For each $y \in C$, $y \in V_y$. Suppose that y is not in V_y . Then $y \in f(Z - W_y)$. This means that there exists $z \in f^{-1}(y)$ such that $z \in Z - W_y$. However, there exists $\alpha \in A_y$ so that $z \in U_\alpha$. Furthermore, this U_α is a subset of W_y . So $z \in U_\alpha \subset W_y$. This means that z is not in $Z - W_y$, a contradiction.

Hence, $\{V_y\}$ is an open cover of the compact set *C*. Thus, there exist points $y_1, \ldots, y_n \in C$ so that $\{V_{y_i} : 1 \le i \le n\}$ is a finite open cover of *C*.

Claim: For each y_i , $f^{-1}(V_{y_i}) \subset W_{y_i}$. Suppose that $z \in f^{-1}(V_{y_i})$. Then, $f(z) \in Y - f(Z - W_y)$. Hence z is not in $Z - W_y$ which means that $z \in W_y$. \Box

Since $C \subset \bigcup V_{y_i}$, we have

$$f^{-1}(C) \subset \bigcup_{i=1}^n f^{-1}(V_{y_i}) \subset \bigcup_{i=1}^n W_{y_i} = \bigcup_{i=1}^n \bigcup_{\alpha \in A_{y_i}} U_\alpha.$$

Thus,

 $\{U_{\alpha}: \text{ there exists } 1 \leq i \leq n \text{ so that } \alpha \in A_{v_i}\}.$

This is a finite subset of $\{U_{\alpha} : \alpha \in A\}$ and it covers $f^{-1}(C)$, so $f^{-1}(C)$ is compact and f is proper.

Lemma 5. Let *X* and *Y* be topological spaces. Then the projection $\pi_Y : X \times Y \to Y$ is an open function.

Proof. Let $W \subset X \times Y$ be an open set. Since products of open sets from X and Y form a basis of the product topology, there exist open sets $U_{\alpha} \subset X$ and $V_{\alpha} \subset Y$ for α in some index set A so that $W = \bigcup U_{\alpha} \times V_{\alpha}$. Then,

$$\pi_Y(W) = \pi_Y(\bigcup U_{\alpha} \times V_{\alpha}) = \bigcup \pi_Y(U_{\alpha} \times V_{\alpha}) = \bigcup V_{\alpha}$$

This last set is open in *Y*.

Lemma 6. Suppose that *X* and *Y* are topological spaces and that *X* is compact. Then for each $y \in Y$, $\pi_Y^{-1}(y) \subset X \times Y$ is compact.

Proof. For each $y \in Y$,

$$\pi_Y^{-1}(y) = X \times \{y\}$$

This is homeomorphic to *X* and so is compact.

Theorem 7. Suppose that *X* and *Y* are compact topological spaces. Then $X \times Y$ is compact.

Proof. The projection $\pi_Y : X \times Y \to Y$ is open and the inverse image of a point in *Y* is compact. Thus, by Lemma 4, π_Y is proper. Since *Y* is compact, $\pi_Y^{-1}(Y) = X \times Y$ is compact.

Corollary 8. If $C \subset \mathbb{R}^n$ is a closed and bounded set, *C* is compact.

Proof. Since *C* is bounded, there exists an interval $[a,b] \in \mathbb{R}$ so that

$$C \subset \times_{i=1}^{n}[a,b] \subset \mathbb{R}^{n}.$$

Since the product of compact spaces is compact $\times_{i=1}^{n}[a,b]$ is compact. Hence, *C* is a closed subset of a compact set. By Lemma 2, *C* is compact.

Theorem 9 (Extreme Value Theorem). Let X be a compact topological space and suppose that $f: X \to \mathbb{R}$ is a continuous function. Then there exists $M \in X$ so that for all $x \in X$, $f(x) \leq f(M)$. Similarly, there exists $m \in X$ so that for all $x \in X$, $f(m) \leq f(x)$.

Proof. We will only prove that M exists. Define M to be the least upperbound of the set $f(X) \subset \mathbb{R}$. (Why does M exist?) If $M \in f(X)$, we are done, so suppose that $M \notin f(X)$. Define

$$U_n = \{(-\infty, M - \frac{1}{n}) \subset \mathbb{R}\}$$

Clearly, each U_n is open in \mathbb{R} . If $x \in X$, then by definition of the least upperbound, $f(x) \leq M$. By the assumption that $M \notin f(X)$, f(x) < M. Thus there exists $k \in \mathbb{N}$, such that $f(x) < M - \frac{1}{k}$. Consequently, $f(x) \in U_k$ and so $\{U_n\}$ is an open cover of f(X). Since X is compact, f(X) is compact. Hence, there is a finite subset of $\{U_n\}$ which covers f(X). Since $U_n \subset U_{n+1}$ for all $n \in \mathbb{N}$, this means that there exists $N \in \mathbb{N}$ so that $f(X) \subset U_N$. In particular,

$$f(x) < M - \frac{1}{N}$$
 for all $x \in X$.

Thus, $M - \frac{1}{N}$ is an upper bound for f(X) which is strictly smaller than M. But this contradicts the fact that M is the least upper bound for f(X). Thus, $M \in f(X)$ and f achieves its maximum.

Definition 10. Suppose that (X,d) is a metric space and that A and B are non-empty subsets. Define

$$d(A,B) = \inf\{d(a,b) : a \in A \text{ and } b \in B\}.$$

Since *d* is a metric, this is a well defined function with values in $[0,\infty) \subset \mathbb{R}$.

We can use the extreme value theorem to prove:

Lemma 11. Suppose that (X,d) is a metric space and that $A, B \subset X$ are non-empty subsets with *B* compact. Then there exists a point $b_0 \in B$ such that $d(A,B) = d(A,b_0)$.

Proof. Fix $a \in A$. The function $d(a, \cdot) \colon B \to \mathbb{R}$ is a continuous real valued function on a compact set. It therefore achieves its minimum (by the extreme value theorem). Let $b_0 \in B$ be the point such that $d(a, b_0)$ is the minimum of $d(a, \cdot)$. Then, for all $a \in A, b \in B$:

$$d(b_0,a) \le d(b,a)$$

which implies that for all $b \in B$:

$$d(b_0, A) = \inf\{d(b_0, a) : a \in A\} \le \inf\{d(b, a) : a \in A\}.$$

This in turn implies

$$d(b_0, A) \le \inf_{b \in B} \inf_{a \in A} \{ d(b, a) \} = \inf \{ d(b, a) : b \in B, a \in A \} = d(A, B).$$

Lemma 12. If (X,d) is a compact metric space and if $x \in X$ and if *B* is a closed subset of *X* with $x \notin B$ then d(x,B) > 0.

Proof. Suppose not. Since *B* is closed, $X \setminus B$ is open. Hence, for each $x \in X \setminus B$, there is a ball $B_{\delta(x)}(x)$ with $\delta > 0$ such that $B_{\delta}(x) \subset X \setminus B$. Then, for all $y \in B$,

$$d(x,y) > \delta(x).$$

Hence, $d(x, B) \ge \delta(x) > 0$.

Definition 13. Suppose that V is a subset of a metric space (X,d). The **diameter** of V is

$$\operatorname{diam}(V) = \sup\{d(x, y) : x, y \in V\}$$

Theorem 14 (Lebesgue Covering Lemma). Let (X, d) be a compact metric space and suppose that $\{U_{\alpha} : \alpha \in A\}$ is an open cover of X. Then there exists $\delta > 0$ such that if $V \subset X$ and diam $(V) < \delta$ then there exists $\alpha \in A$ so that $V \subset U_{\alpha}$.

Proof. If $x \in X$ then there exists α so that $x \in U_{\alpha}$. Choose $\varepsilon(x) > 0$ so that $B_{2\varepsilon(x)}(x) \subset U_{\alpha}$. (Notice that $\varepsilon(x)$ also depends on α .). The set $\mathscr{B} = \{B_{\varepsilon(x)}(x) : x \in X\}$ is an open cover of X. Since X is compact, there exists a finite subset of \mathscr{B} which also covers X. That is, there exist points x_1, x_2, \ldots, x_n so that $\{B_{\varepsilon(x_i)} : 1 \le i \le n\}$ is an open cover of X. Define

$$\delta = \min\{\varepsilon(x_i) : 1 \le i \le n\}.$$

Suppose that $V \subset X$ and that diam $(V) < \delta$. We wish to show that there exists α such that $V \subset U_{\alpha}$. Let $x \in V$. There exists *i* so that $x \in B_{\varepsilon(x_i)}(x_i)$. That is, $d(x,x_i) < 2\varepsilon(x_i)$. Let $y \in V$. We desire to show that $y \in B_{2\varepsilon(x_i)}(x_i)$. We know that

$$d(y,x_i) \le d(y,x) + d(x,x_i) \le \delta + \varepsilon(x_i) \le 2\varepsilon(x_i).$$

Thus, $y \in B_{2\varepsilon(x_i)}(x_i)$. Hence, $V \subset B_{2\varepsilon(x_i)}(x_i) \subset U_{\alpha}$ for some α .

For a fixed open cover $\{U_{\alpha}\}$, the least upperbound of the numbers δ in the statement of the previous lemma is called the **Lebesgue number** of the cover.

Lemma 15. Suppose that (X,d) is a compact non-empty metric space. Then the Lebesgue number of any open cover of X is non-zero.

Proof. Let \mathscr{U} be an open cover of *X*. Since *X* is compact, there is a finite subcover $\mathscr{U}' \subset \mathscr{U}$. Let $\mathscr{U}' = \{U_1, \ldots, U_n\}$. For $x \in X$ define

 $f_i(x) = d(x, X \setminus U_i).$

Recall that if $x \in U_i$ then $f_i(x) > 0$. Define

$$f(x) = \max\{f_1(x), \dots, f_n(x)\}.$$

The function f is continuous. Also, if $x \in X$, then f(x) > 0. To see this, notice that since \mathscr{U}' is a cover of X, for each $x \in X$, there exists i so that $x \in U_i$. Then $f_i(x) > 0$.

Thus, $f(X) \subset \mathbb{R}$ does not contain 0. Since X is compact, by the extreme value theorem, there exists $m \in X$ so that $f(m) = \inf f(X)$. In particular, $0 \neq \inf f(X)$. Hence, there exists $\varepsilon > 0$ so that for each $x \in X$, $f(x) \geq f(m) > \mu > 0$.

Suppose that $V \subset X$ is a subset with diam $(V) < \mu$. Let $x \in V$. There exists *i* so that $f_i(x) > \mu$. That is, $d(x, X \setminus U_i) > \mu$. In other words, $B_{\mu}(x) \subset U_i$. Since diam $(V) < \mu$,

$$V \subset B_{\mu}(x) \subset U_i.$$

Hence, the Lebesgue number for \mathscr{U} is at least $\mu > 0$.