Theorems on Compactness

These statements and proofs are based on theorems from Bredon’s Topology
and Geometry.

We begin by proving that the space [0, 1] is compact.
Theorem 1. With the subspace topology, [0, 1] C R is compact

Proof. Let % be an open cover of [0, 1]. Define
S={s€]0,1]: there is a finite subset of %/ which covers [0, s]}.
Let b be the least upper bound for S.

Claim : S =[0,b) or S = [0, )]

To see this, suppose that s € S. Let %’ be a finite subset of %/ which
covers [0,s]. Then for all s’ < s, %' also covers [0,s']. Hence, if s € S, then
[0,5] C S. 0

Claim: S = [0,D].

Suppose not; that is, suppose that S = [0,b). Since % is an open cover of
0, 1], there exists an open set U € % so that b € % . Since U is an open
setin [0, 1], there exists € > 0 so that the interval (b — €,b] is a subset of U.
Since b is the least upper bound for S, the number b — £ /2 is contained in S.
Let %' be a finite subset of % which covers [0,b—€/2]. Then ' U{U} is
a finite subset of U’ which covers [0,b]. Hence, b € S and so, S = [0,b]. O

Claim: S = [0,1]. Suppose not. That is, suppose that b < 1. Let %' be a
finite subset of %7 which covers S = [0,b]. Since each set of 7%/ is open in
[0, 1], there exists a set U € % so that b € U. Since U is open and since
b < 1, there exists € > 0 so that (b,b+¢€) C U. Thus, %" is a finite subset
of % which covers [0,b+ €/2]. This implies that b+ €/2 € S. But, b is the
least upperbound for S and so this is impossible. U

Thus, [0, 1] is compact. O

Lemma 2. If X is compact and if A C X is closed, then A is compact.

Proof. Let % be an open cover of A. Since A C X is compact, X — A is
open. Thus, % U{X — A} is an open cover of X. Since X is compact, there
exists a finite subcover. Let %/’ be that finite subcover minus the set X — A,
if X — A was in that subcover. Then %’ is a finite subcover of % which
covers A. Hence, A is compact. O

We now proceed to show that the product of two compact spaces is compact.
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Definition 3. If Z and Y are compact topological spaces and if f: Z —Y
is a function then f is proper, if for each compact set C C Y, f _1(C) is
compact. The function f is open, if for each open set U C Z, the set f(U)
isopenin?Y.

Lemma 4. Suppose that Z and Y are topological spaces and that f: Z —Y
is an open function. Suppose that for each y € Y, f~!(y) is compact in X.
Then f is a proper function.

Proof. Let C C Y be compact. We wish to show that f~!(C) is compact in
Z. Let {Uy : o € A} be an open cover, with A an index set. For each y € C,
f~1(y) is compact. Let A, C A be a finite subset so that {Uq : @ € A} is a
finite cover of f~1(y). Since each Uy, is open, the set

W= | Ua
OEAy
is open in Z.

Since f is an open function, the image of a closed set is closed. Hence,
f(Z—W,)is aclosed setin Y. Thus,

Vi =Y —f(Z-W)
is an open setin Y.

Claim: For each y € C, y € Vj. Suppose that y is not in V. Then y €
f(Z—W,). This means that there exists z € f~!(y) such that z € Z — W,
However, there exists & € A, so that z € Uy. Furthermore, this Uy is a subset
of Wy. So z € Uy C Wy. This means that z is not in Z — W), a contradiction.

Hence, {V}} is an open cover of the compact set C. Thus, there exist points
Y1,---,¥n € Csothat {V;, : 1 <i <n} is a finite open cover of C.

Claim: For each y;, f~!(V),) C W,,. Suppose that z € f~1(V;,). Then,
f(z) €Y — f(Z—W,). Hence zis not in Z— W, which means thatz e W,. O

Since C C |JVy,, we have

Thus,
{Uq : there exists 1 <i<nsothata € Ay, }.

This is a finite subset of {Ug : @ € A} and it covers f~!(C), so f~1(C) is
compact and f is proper. O
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Lemma 5. Let X and Y be topological spaces. Then the projection 7y : X X
Y — Y is an open function.

Proof. Let W C X x Y be an open set. Since products of open sets from X
and Y form a basis of the product topology, there exist open sets Uy C X
and V, C Y for o in some index set A so that W = |JUy X V. Then,

my (W) =7y ((JUa x Vo) =y (Ua x Vi) = | Vi
This last set is openin Y. U

Lemma 6. Suppose that X and Y are topological spaces and that X is com-
pact. Then for eachy € ¥, 1, ' (y) C X x Y is compact.

Proof. ForeachyeY,
Ty (v) =X < {y}
This is homeomorphic to X and so is compact. U

Theorem 7. Suppose that X and Y are compact topological spaces. Then
X xY is compact.

Proof. The projection my : X XY — Y is open and the inverse image of a
point in Y is compact. Thus, by Lemma 4, 7y is proper. Since Y is compact,
my '(Y) = X x Y is compact. O

Corollary 8. If C C R" is a closed and bounded set, C is compact.

Proof. Since C is bounded, there exists an interval [a,b] € R so that
C C x! [a,b] CR".

Since the product of compact spaces is compact x”_,[a,b| is compact.
Hence, C is a closed subset of a compact set. By Lemma 2, C is com-
pact. U

Theorem 9 (Extreme Value Theorem). Let X be a compact topological
space and suppose that f: X — R is a continuous function. Then there
exists M € X so that for all x € X, f(x) < f(M). Similarly, there exists
m € X so that for all x € X, f(m) < f(x).

Proof. We will only prove that M exists. Define M to be the least upper-
bound of the set f(X) C R. (Why does M exist?) If M € f(X), we are done,
so suppose that M ¢ f(X). Define

Un:{(—oo,M—%) CR)
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Clearly, each U, is open in R. If x € X, then by definition of the least
upperbound, f(x) < M. By the assumption that M ¢ f(X), f(x) < M. Thus
there exists k € N, such that f(x) < M — . Consequently, f(x) € Uy and
so {U,} is an open cover of f(X). Since X is compact, f(X) is compact.
Hence, there is a finite subset of {U, } which covers f(X). Since U, C Uy 4|
for all n € N, this means that there exists N € N so that f(X) C Uy. In
particular,

1
f(x)<M—]T] for all x € X.

Thus, M — 1lv is an upper bound for f(X) which is strictly smaller than M.
But this contradicts the fact that M is the least upper bound for f(X). Thus,
M € f(X) and f achieves its maximum. O

Definition 10. Suppose that (X,d) is a metric space and that A and B are
non-empty subsets. Define

d(A,B) = inf{d(a,b) :a € A and b € B}.

Since d is a metric, this is a well defined function with values in [0,00) C R.

We can use the extreme value theorem to prove:

Lemma 11. Suppose that (X,d) is a metric space and that A,B C X are
non-empty subsets with B compact. Then there exists a point by € B such
that d(A,B) = d(A,by).

Proof. Fix a € A. The function d(a,-): B — R is a continuous real val-
ued function on a compact set. It therefore achieves its minimum (by the
extreme value theorem). Let by € B be the point such that d(a,by) is the
minimum of d(a,-). Then, foralla € A, b € B:

d(bg,a) < d(b,a)
which implies that for all b € B:
d(bo,A) = inf{d(bg,a) :a € A} <inf{d(b,a):a € A}.
This in turn implies
d(bo,A) < grellf%ilrelg{d(b,a)} =inf{d(b,a) :b € B,ac A} =d(A,B).
n

Lemma 12. If (X,d) is a compact metric space and if x € X and if B is a
closed subset of X with x ¢ B then d(x,B) > 0.
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Proof. Suppose not. Since B is closed, X \B is open. Hence, for each x €
X\B, there is a ball Bg,)(x) with 6 > 0 such that Bs(x) C X\B. Then, for
ally € B,

d(x,y) > 0(x).
Hence, d(x,B) > 6(x) > 0. O

Definition 13. Suppose that V is a subset of a metric space (X,d). The
diameter of V is

diam(V') = sup{d(x,y) : x,y € V}

Theorem 14 (Lebesgue Covering Lemma). Let (X,d) be a compact metric
space and suppose that {Uy : & € A} is an open cover of X. Then there
exists 6 > 0 such that if V C X and diam(V') < § then there exists o € A so
that V C Uyg.

Proof. If x € X then there exists a so that x € Uy. Choose €(x) > 0 so
that Byg(y)(x) C Ug. (Notice that €(x) also depends on «.). The set # =
{Be(x)(x) : x € X} is an open cover of X. Since X is compact, there ex-
ists a finite subset of 4 which also covers X. That is, there exist points
X1,X2, -, Xp SO that {Bg(y,) : 1 <i < n} is an open cover of X. Define

0 =min{e(x;) : 1 <i<n}.

Suppose that V C X and that diam(V) < 6. We wish to show that there
exists & such that V C Ugy. Let x € V. There exists i so that x € Bg(xi)(xi).
That is, d(x,x;) < 2&(x;). Lety € V. We desire to show that y € Byg(y,)(%i)-
We know that

d(y,xi) < d(y,x) +d(x,x;) < 8 +€(x;) < 2€(x;).
Thus, y € By (y,)(x:). Hence, V C Byg(y,) (xi) C Uq for some a. O
For a fixed open cover {Uy}, the least upperbound of the numbers § in

the statement of the previous lemma is called the Lebesgue number of the
cover.

Lemma 15. Suppose that (X,d) is a compact non-empty metric space.
Then the Lebesgue number of any open cover of X is non-zero.
Proof. Let 7/ be an open cover of X. Since X is compact, there is a finite
subcover %' C % . Let %' = {Uy,...,U,}. For x € X define
filx) =d(x,X\U,).
Recall that if x € U; then f;(x) > 0. Define
f(x) = max{fi(x),..., fu(x)}.
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The function f is continuous. Also, if x € X, then f(x) > 0. To see this,
notice that since %/’ is a cover of X, for each x € X, there exists i so that
x € U;. Then f;(x) > 0.

Thus, f(X) C R does not contain 0. Since X is compact, by the extreme
value theorem, there exists m € X so that f(m) = inf f(X). In particular,
0 # inf f(X). Hence, there exists € > 0 so that for each x € X, f(x) >
f(m)>u>0.

Suppose that V C X is a subset with diam(V) < u. Let x € V. There exists
i so that fj(x) > p. Thatis, d(x,X\U;) > u. In other words, By (x) C U;.
Since diam(V) < u,

V C B# (X) Cc U;.
Hence, the Lebesgue number for 7% is at least yt > 0. O



