
Theorems on Compactness

These statements and proofs are based on theorems from Bredon’s Topology
and Geometry.

We begin by proving that the space [0,1] is compact.

Theorem 1. With the subspace topology, [0,1]⊂ R is compact

Proof. Let U be an open cover of [0,1]. Define

S = {s ∈ [0,1] : there is a finite subset of U which covers [0,s]}.
Let b be the least upper bound for S.

Claim : S = [0,b) or S = [0,b]
To see this, suppose that s ∈ S. Let U ′ be a finite subset of U which
covers [0,s]. Then for all s′ < s, U ′ also covers [0,s′]. Hence, if s ∈ S, then
[0,s]⊂ S. �

Claim: S = [0,b].
Suppose not; that is, suppose that S = [0,b). Since U is an open cover of
[0,1], there exists an open set U ∈ U so that b ∈ U . Since U is an open
set in [0,1], there exists ε > 0 so that the interval (b− ε,b] is a subset of U .
Since b is the least upper bound for S, the number b−ε/2 is contained in S.
Let U ′ be a finite subset of U which covers [0,b−ε/2]. Then U ′∪{U} is
a finite subset of U ′ which covers [0,b]. Hence, b ∈ S and so, S = [0,b]. �

Claim: S = [0,1]. Suppose not. That is, suppose that b < 1. Let U ′ be a
finite subset of U which covers S = [0,b]. Since each set of U is open in
[0,1], there exists a set U ∈ U so that b ∈U . Since U is open and since
b < 1, there exists ε > 0 so that (b,b + ε)⊂U . Thus, U ′ is a finite subset
of U which covers [0,b+ ε/2]. This implies that b+ ε/2 ∈ S. But, b is the
least upperbound for S and so this is impossible. �

Thus, [0,1] is compact. �

Lemma 2. If X is compact and if A⊂ X is closed, then A is compact.

Proof. Let U be an open cover of A. Since A ⊂ X is compact, X −A is
open. Thus, U ∪{X −A} is an open cover of X . Since X is compact, there
exists a finite subcover. Let U ′ be that finite subcover minus the set X −A,
if X −A was in that subcover. Then U ′ is a finite subcover of U which
covers A. Hence, A is compact. �

We now proceed to show that the product of two compact spaces is compact.
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Definition 3. If Z and Y are compact topological spaces and if f : Z→ Y
is a function then f is proper, if for each compact set C ⊂ Y , f−1(C) is
compact. The function f is open, if for each open set U ⊂ Z, the set f (U)
is open in Y .

Lemma 4. Suppose that Z and Y are topological spaces and that f : Z→Y
is an open function. Suppose that for each y ∈ Y , f−1(y) is compact in X .
Then f is a proper function.

Proof. Let C ⊂ Y be compact. We wish to show that f−1(C) is compact in
Z. Let {Uα : α ∈ A} be an open cover, with A an index set. For each y ∈C,
f−1(y) is compact. Let Ay ⊂ A be a finite subset so that {Uα : α ∈ Ay} is a
finite cover of f−1(y). Since each Uα is open, the set

Wy =
⋃

α∈Ay

Uα

is open in Z.

Since f is an open function, the image of a closed set is closed. Hence,
f (Z−Wy) is a closed set in Y . Thus,

Vy = Y − f (Z−Wy)

is an open set in Y .

Claim: For each y ∈ C, y ∈ Vy. Suppose that y is not in Vy. Then y ∈
f (Z−Wy). This means that there exists z ∈ f−1(y) such that z ∈ Z−Wy.
However, there exists α ∈Ay so that z∈Uα . Furthermore, this Uα is a subset
of Wy. So z ∈Uα ⊂Wy. This means that z is not in Z−Wy, a contradiction.

Hence, {Vy} is an open cover of the compact set C. Thus, there exist points
y1, . . . ,yn ∈C so that {Vyi : 1≤ i≤ n} is a finite open cover of C.

Claim: For each yi, f−1(Vyi) ⊂Wyi . Suppose that z ∈ f−1(Vyi). Then,
f (z)∈Y− f (Z−Wy). Hence z is not in Z−Wy which means that z∈Wy. �

Since C ⊂
⋃

Vyi , we have

f−1(C)⊂
n⋃

i=1

f−1(Vyi)⊂
n⋃

i=1

Wyi =
n⋃

i=1

⋃
α∈Ayi

Uα .

Thus,
{Uα : there exists 1≤ i≤ n so thatα ∈ Ayi}.

This is a finite subset of {Uα : α ∈ A} and it covers f−1(C), so f−1(C) is
compact and f is proper. �
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Lemma 5. Let X and Y be topological spaces. Then the projection πY : X×
Y → Y is an open function.

Proof. Let W ⊂ X ×Y be an open set. Since products of open sets from X
and Y form a basis of the product topology, there exist open sets Uα ⊂ X
and Vα ⊂ Y for α in some index set A so that W =

⋃
Uα ×Vα . Then,

πY (W ) = πY (
⋃

Uα ×Vα) =
⋃

πY (Uα ×Vα) =
⋃

Vα

This last set is open in Y . �

Lemma 6. Suppose that X and Y are topological spaces and that X is com-
pact. Then for each y ∈ Y , π

−1
Y (y)⊂ X×Y is compact.

Proof. For each y ∈ Y ,
π
−1
Y (y) = X×{y}

This is homeomorphic to X and so is compact. �

Theorem 7. Suppose that X and Y are compact topological spaces. Then
X×Y is compact.

Proof. The projection πY : X ×Y → Y is open and the inverse image of a
point in Y is compact. Thus, by Lemma 4, πY is proper. Since Y is compact,
π
−1
Y (Y ) = X×Y is compact. �

Corollary 8. If C ⊂ Rn is a closed and bounded set, C is compact.

Proof. Since C is bounded, there exists an interval [a,b] ∈ R so that

C ⊂×n
i=1[a,b]⊂ Rn.

Since the product of compact spaces is compact ×n
i=1[a,b] is compact.

Hence, C is a closed subset of a compact set. By Lemma 2, C is com-
pact. �

Theorem 9 (Extreme Value Theorem). Let X be a compact topological
space and suppose that f : X → R is a continuous function. Then there
exists M ∈ X so that for all x ∈ X , f (x) ≤ f (M). Similarly, there exists
m ∈ X so that for all x ∈ X , f (m)≤ f (x).

Proof. We will only prove that M exists. Define M to be the least upper-
bound of the set f (X)⊂R. (Why does M exist?) If M ∈ f (X), we are done,
so suppose that M 6∈ f (X). Define

Un = {(−∞,M− 1
n
)⊂ R}
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Clearly, each Un is open in R. If x ∈ X , then by definition of the least
upperbound, f (x)≤M. By the assumption that M 6∈ f (X), f (x) < M. Thus
there exists k ∈ N, such that f (x) < M− 1

k . Consequently, f (x) ∈Uk and
so {Un} is an open cover of f (X). Since X is compact, f (X) is compact.
Hence, there is a finite subset of {Un} which covers f (X). Since Un ⊂Un+1
for all n ∈ N, this means that there exists N ∈ N so that f (X) ⊂ UN . In
particular,

f (x) < M− 1
N

for all x ∈ X .

Thus, M− 1
N is an upper bound for f (X) which is strictly smaller than M.

But this contradicts the fact that M is the least upper bound for f (X). Thus,
M ∈ f (X) and f achieves its maximum. �

Definition 10. Suppose that (X ,d) is a metric space and that A and B are
non-empty subsets. Define

d(A,B) = inf{d(a,b) : a ∈ A and b ∈ B}.

Since d is a metric, this is a well defined function with values in [0,∞)⊂R.

We can use the extreme value theorem to prove:

Lemma 11. Suppose that (X ,d) is a metric space and that A,B ⊂ X are
non-empty subsets with B compact. Then there exists a point b0 ∈ B such
that d(A,B) = d(A,b0).

Proof. Fix a ∈ A. The function d(a, ·) : B→ R is a continuous real val-
ued function on a compact set. It therefore achieves its minimum (by the
extreme value theorem). Let b0 ∈ B be the point such that d(a,b0) is the
minimum of d(a, ·). Then, for all a ∈ A, b ∈ B:

d(b0,a)≤ d(b,a)

which implies that for all b ∈ B:

d(b0,A) = inf{d(b0,a) : a ∈ A} ≤ inf{d(b,a) : a ∈ A}.

This in turn implies

d(b0,A)≤ inf
b∈B

inf
a∈A
{d(b,a)}= inf{d(b,a) : b ∈ B,a ∈ A}= d(A,B).

. �

Lemma 12. If (X ,d) is a compact metric space and if x ∈ X and if B is a
closed subset of X with x 6∈ B then d(x,B) > 0.
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Proof. Suppose not. Since B is closed, X\B is open. Hence, for each x ∈
X\B, there is a ball Bδ (x)(x) with δ > 0 such that Bδ (x) ⊂ X\B. Then, for
all y ∈ B,

d(x,y) > δ (x).
Hence, d(x,B)≥ δ (x) > 0. �

Definition 13. Suppose that V is a subset of a metric space (X ,d). The
diameter of V is

diam(V ) = sup{d(x,y) : x,y ∈V}

Theorem 14 (Lebesgue Covering Lemma). Let (X ,d) be a compact metric
space and suppose that {Uα : α ∈ A} is an open cover of X . Then there
exists δ > 0 such that if V ⊂ X and diam(V ) < δ then there exists α ∈ A so
that V ⊂Uα .

Proof. If x ∈ X then there exists α so that x ∈ Uα . Choose ε(x) > 0 so
that B2ε(x)(x) ⊂Uα . (Notice that ε(x) also depends on α .). The set B =
{Bε(x)(x) : x ∈ X} is an open cover of X . Since X is compact, there ex-
ists a finite subset of B which also covers X . That is, there exist points
x1,x2, . . . ,xn so that {Bε(xi) : 1≤ i≤ n} is an open cover of X . Define

δ = min{ε(xi) : 1≤ i≤ n}.
Suppose that V ⊂ X and that diam(V ) < δ . We wish to show that there
exists α such that V ⊂Uα . Let x ∈ V . There exists i so that x ∈ Bε(xi)(xi).
That is, d(x,xi) < 2ε(xi). Let y ∈V . We desire to show that y ∈ B2ε(xi)(xi).
We know that

d(y,xi)≤ d(y,x)+d(x,xi)≤ δ + ε(xi)≤ 2ε(xi).

Thus, y ∈ B2ε(xi)(xi). Hence, V ⊂ B2ε(xi)(xi)⊂Uα for some α . �

For a fixed open cover {Uα}, the least upperbound of the numbers δ in
the statement of the previous lemma is called the Lebesgue number of the
cover.

Lemma 15. Suppose that (X ,d) is a compact non-empty metric space.
Then the Lebesgue number of any open cover of X is non-zero.

Proof. Let U be an open cover of X . Since X is compact, there is a finite
subcover U ′ ⊂U . Let U ′ = {U1, . . . ,Un}. For x ∈ X define

fi(x) = d(x,X\Ui).

Recall that if x ∈Ui then fi(x) > 0. Define

f (x) = max{ f1(x), . . . , fn(x)}.
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The function f is continuous. Also, if x ∈ X , then f (x) > 0. To see this,
notice that since U ′ is a cover of X , for each x ∈ X , there exists i so that
x ∈Ui. Then fi(x) > 0.

Thus, f (X) ⊂ R does not contain 0. Since X is compact, by the extreme
value theorem, there exists m ∈ X so that f (m) = inf f (X). In particular,
0 6= inf f (X). Hence, there exists ε > 0 so that for each x ∈ X , f (x) ≥
f (m) > µ > 0.

Suppose that V ⊂ X is a subset with diam(V ) < µ . Let x ∈V . There exists
i so that fi(x) > µ . That is, d(x,X\Ui) > µ . In other words, Bµ(x) ⊂Ui.
Since diam(V ) < µ ,

V ⊂ Bµ(x)⊂Ui.

Hence, the Lebesgue number for U is at least µ > 0. �


