Problem Set 3

MA 111 Spring 2009

Complete the following problems on a separate sheet of paper. This assignment is due Wednesday, March 11.

Problem 1: Recall that D_{6} consists of the symmetries of a regular hexagon. Label the reflections as in the picture. The rotational symmetries are $\mathbf{I}, R_{60}, R_{120}, R_{180}$, R_{240}, R_{300}. Consider the subgroup

$$
H=\left\{\mathbf{I}, R_{120}, R_{240}\right\}
$$

List all the cosets of H in G.

Problem 2: Suppose that p is a prime number and that G is a group containing p symmetries.
(1) If H is a subgroup of G, how many symmetries might be in H ?
(2) Explain why G can be generated by any symmetry other than I. (Hint: Let g be a symmetry and consider the subgroup $\langle g\rangle$.)
Problem 3: Think of $g=[1 \rightarrow 2 \rightarrow 3 \rightarrow] \circ[4 \rightarrow 5 \rightarrow 6 \rightarrow]$ as a symmetry in \mathbb{S}_{6}. Let $H=\langle g\rangle$.
(1) How many symmetries are in H ?
(2) Explain why g is in A_{6}.
(3) Explain why H is a subgroup of both A_{6} and \mathbb{S}_{6}.
(4) Calculate $\left[\mathbb{S}_{6}: H\right]$.
(5) Calculate $\left[A_{6}: H\right]$.

Problem 4: How many symmetries does a dodecahedron have? Be sure to carefully explain why this is the case.

