Problem Set 2

MA 111 Spring 2009

Complete the following problems on a separate sheet of paper. This assignment is due **Monday, March 2**.

Problem 1: Give a careful explanation, in your own words, of why D_n can always be generated by a reflection and a rotation. Be sure to address whether or not *any* rotation and reflection will generate D_n .

Problem 2: Give a careful explanation, in your own words, of why D_n can always be generated by two reflections. Be sure to address whether or not *any* two reflections will generate D_n .

Problem 3: In class we made a list of the 24 elements of S_4 . Using that list, perform the following computations.

 $\begin{array}{ll} (1) & [2 \leftrightarrow 3] \circ [1 \rightarrow 3 \rightarrow 4 \rightarrow 2 \rightarrow] \\ (2) & [1 \leftrightarrow 2] \circ [2 \leftrightarrow 3] \circ [3 \leftrightarrow 4] \\ (3) & [1 \rightarrow 2 \rightarrow 3 \rightarrow 4] \circ [1 \rightarrow 3 \rightarrow 2 \rightarrow 4] \end{array}$

Problem 4: Do the symmetries $[1 \leftrightarrow 2] \circ [3 \leftrightarrow 4]$ and $[2 \rightarrow 3 \rightarrow 4]$ generate \mathbb{S}_4 ? Why or why not? If they do not, how many elements are in the subgroup generated by them?

Problem 5: In S_5 , consider the subgroup $H = \langle [1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow] \rangle$. How many elements are in *H*?

Problem 6: Explain why we can think of the group D_n as a subgroup of \mathbb{S}_n .