Problem Set 2

MA 111 Spring 2009

Complete the following problems on a separate sheet of paper. This assignment is due Monday, March 2.

Problem 1: Give a careful explanation, in your own words, of why D_{n} can always be generated by a reflection and a rotation. Be sure to address whether or not any rotation and reflection will generate D_{n}.

Problem 2: Give a careful explanation, in your own words, of why D_{n} can always be generated by two reflections. Be sure to address whether or not any two reflections will generate D_{n}.

Problem 3: In class we made a list of the 24 elements of \mathbb{S}_{4}. Using that list, perform the following computations.
(1) $[2 \leftrightarrow 3] \circ[1 \rightarrow 3 \rightarrow 4 \rightarrow 2 \rightarrow]$
(2) $[1 \leftrightarrow 2] \circ[2 \leftrightarrow 3] \circ[3 \leftrightarrow 4]$
(3) $[1 \rightarrow 2 \rightarrow 3 \rightarrow 4] \circ[1 \rightarrow 3 \rightarrow 2 \rightarrow 4]$

Problem 4: Do the symmetries $[1 \leftrightarrow 2] \circ[3 \leftrightarrow 4]$ and $[2 \rightarrow 3 \rightarrow 4]$ generate \mathbb{S}_{4} ? Why or why not? If they do not, how many elements are in the subgroup generated by them?

Problem 5: In \mathbb{S}_{5}, consider the subgroup $H=\langle[1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow]\rangle$. How many elements are in H ?

Problem 6: Explain why we can think of the group D_{n} as a subgroup of \mathbb{S}_{n}.

