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We have seen various ways of describing the groups Dn and Sn using differ-
ent generating sets. In general, it is a difficult problem to explicitly describe
a given group, whether or not it is a group of symmetries. Using an exten-
sion of LaGrange’s theorem, though, we can learn somethings.

Definition 4. Suppose that G is a group of symmetries of an object X . Let
x be a point of X . Define the orbit of x to be the set of all points y in X .
such that there is a symmetry in G which takes x to y. Denote this set by
orbG(x).

Let x be a vertex of the square. The group D4 is the group of all symmetries
of the square. A symmetry in D4 takes x to another vertex, and we can send
x to any vertex we want to by choosing an appropriate symmetry in D4.
Thus, orbD4(x) is the set of vertices of the square.

The group G = {I,R180} is a subgroup of D8. The set orbG(x) consists of
the vertex x and the vertex directly opposite it on the square.

Definition 5. Suppose that G is a group of symmetries of an object X . Let
x be a point of X . The set of group elements g which don’t move x is called
the stabilizer of x in G. It is denoted stabG(x).

Let x be the upper left vertex of the square, then stabD4(x) = {I,D} since
every element of D4 except the identity and the diagonal reflection moves x
to some other vertex. If x is the center of the square, then stabD4(x) = D4,
since no element of D4 moves the center of the square.

Exercise 16. Prove that stabG(x) is a subgroup of G for any given point x.

Theorem 5. (Orbit-Stabilizer) Suppose that G is a group of symmetries of
an object X . For any point x in X ,

|orbG(x)| · |stabG(x)| = |G|.

Proof. We simply need to show that |orbG(x)| = [G : stabG(x)]. Let [g]
be a coset of stabG(x) in G. Match the coset [g] with the point g(x) in
orbG(x). Notice that if g and g′ are both in [g] then we have g′ = g ◦ h for
some h in stabG(x). Then g′(x) = g ◦ h(x). Since h(x) = x, g′(x) = g(x)
and so this matching is well defined. Notice also that ever point in the orbit
of x is matched with some coset and that if g(x) = g′(x) then g−1◦g′(x) = x.
This implies that g−1 ◦ g is in stabG(x). It turns out that this implies that
[g] = [g′].

Thus, each coset of stabG(x) is matched with one point in orbG(x) and
different cosets are matched with different points. Since each point of the
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orbit of x is matched with some coset, the size of orbG(x) is equal to the
number of cosets which is [G : stabG(x)]. !

Let’s use this to do something interesting.

Let X be a cube in 3–space and let G = Sym(X). Let’s determine how many
symmetries are in G. Let x be a vertex of the cube. There is a symmetry
which sends x to any other vertex that we want. Every symmetry of X
must send vertices to vertices. The cube has 8 vertices, so |orbG(x)| = 8.
Suppose that T is a symmetry of the square which doesn’t move x. There
are three edges coming into x and T must permute those in some way. It
is not hard to see that all possibilities for permutations can be achieved.
Furthermore, if T fixes x and all edges coming into x then T must be I. To
see this, recall that if a symmetry of 3–space fixes three points then it is the
identity.

Thus,
|stabG(x)| = |S3| = 6.

Hence, by the orbit-stabilizer theorem, G has 8 ·6 = 48 elements.

The five platonic solids are the tetrahedron, the cube, the octahedron, the
dodecahedron, and the iscosahedron.

Exercise 17. Look up pictures of each of the platonic solids and perform an
analysis similar to what we just did to determine the orders of their groups
of symmetries.

Some of the symmetries that we counted include reflections. Let Sym+(X)
denote the subgroup of Sym+(X) which preserve the orientation of 3–space.
Let [g] and [h] be cosets of this group in Sym(X) where both g and h reverse
orientation. Notice that g−1 reverses orientation. Notice also that, k =
g−1◦h must preserve orientation; that is, g◦h is in Sym+(X). The symmetry
k−1 also preserves orientation. Thus,

h◦ k−1 is in [h].
But

h◦ k−1 = h◦ (g−1 ◦h)−1 = h◦h−1 ◦g = g.

Hence, [g] = [h]. This proves that there are at most two cosets of Sym+(X)
in Sym(X): Sym+(X) and one other one [g]. Thus, the index of Sym+(X) is
either one or two in Sym+(X). We can conclude, for example, that there are
24 orientation preserving symmetries of the cube. Figure 4 depicts three
representative examples.
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FIGURE 4. Examples of the three types of orientation pre-
serving symmetries of the cube.


