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Notice, therefore that S is a symmetry of dots 2, 3, and 4. It is, therefore a
product of transpositions. Notice that C ◦C = I. We have

S = C ◦T

Thus,
C ◦S = (C ◦C)◦T
C ◦S = I◦T
C ◦S = T.

Thus, T is the combination of transpositions. A similar argument shows
that every symmetry in S5 is the combination of transpositions. We then
boot strap our way to conclude that every symmetry in Sn is a combination
of transpositions for any n ≥ 2. !
Exercise 9. How many transpositions are there in Sn?

Exercise 10. Show that the following set of transpositions generate Sn for
n ≥ 2:

[1 ↔ 2]
[2 ↔ 3]
[3 ↔ 4]

...
[n−1 ↔ n].

These are called adjacent transpositions.

Exercise 11. How many adjacent transpositions are there in Sn?
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2.3. Relations. Suppose that G is a group and that we have a list of gen-
erators s1,s2, . . . ,sn for G. Recall that this means that every element of the
group can be written as a combination of the si and their inverses. Is this
enough to specify the group? No – many different groups can be gener-
ated by n generators. To specify the which group we are discussing, we
also need to list some relations. Relations are equations which tell us that
certain combinations of the generators are equal to I. Here is an example.

Suppose that G is a group with one generator s. Denote the combination of
s with itself n times by sn. Let s−n denote the combination of s−1 with itself
n times. Then the following list includes all the elements of G:

. . . ,s−4,s−3,s−2,s−1,I,s1,s2,s3,s4, . . .

There are infinitely many items in this list. If G has no relations then this is
the list of elements in G with no repetitions. Suppose however, that G has
the relation:

R1 : s3 = I

Then anytime we see s ◦ s ◦ s we may cancel it (i.e. replace it with I). For
example, if R1 holds

s8 = (s◦ s◦ s)◦ (s◦ s◦ s)◦ s◦ s = s◦ s = s2

Some thought shows that if G has one generator (s) and the relation R1 then

G = {I,s,s2}.

We can write this as G = 〈s|s3 = I〉. Notice that if s3 = I, then s−3 = I since

s−3 ◦ s3 = s−3 ◦ I ⇒ I = s−3.

What happens if G has the relation R1 and the relation

R2 : s4 = I?

Notice then that:

s = s4 ◦ s−3 = s4 ◦ I = I

by first applying R1 and then applying R2. Thus, the group

〈s|s3 = I,s4 = I〉

is just the group consisting only of the identity.
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It turns out that every group has a presentation in terms of a list of generators
and a list of relations. Here are some common group presentations:

Cn 〈 s | sn = I 〉

Dn 〈 s, t | sn = I, t2 = I 〉

Sn

〈
s1,s2, . . . ,sn |

s2
i = I

sisi+1si = si+1sisi+1
sis j = s jsi if |i− j| (= 1

〉

3. SUBGROUPS

Let G be a group with operation ◦. A subset H of G is a subgroup if H is a
group with operation ◦.

Exercise 12. Show that the set of rotations in Dn is a subgroup of Dn. It is
usually denoted Cn.

Exercise 13. Let An be the set of elements in Sn which can be written as
a product of an even number of transpositions. It is called the alternating
group of n dots. Show that An is a subgroup of Sn.

Exercise 14. Let x be an element of a group G. Show that the set of all
combinations of x with itself and with its inverse is a subgroup of G. It is
denoted by 〈x〉. Explain why Cn = 〈x〉 for some x in D2n. Specify what x is.

Definition 2. The order of a finite group is simply the number of elements
in the group.

We now come to the most important theorem in group theory.

Definition 3. Suppose that H is a subgroup of a finite group G. Then the
order of G is divisible by the order of H.

For example, the order of Dn is twice the order of Cn.

To begin the proof of the theorem we need some more concepts. For an
element g in G, denote by [g] the set:

{g◦h : h is in H}.

The set [g] is called the coset of G. If we have a group table for G, the set
[g] is simply the collection of all group elements in the row beginning with
g which are also in a column headed by an element of H.
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S1

S2

S2 ◦S1 I R90 R180 R270 D V O H
I I R90 R180 R270 D V O H

R90 R90 R180 R270 I H D V O
R180 R180 R270 I R90 O H D V
R270 R270 I R90 R180 V O H D

D D V O H I R90 R180 R270
V V O H D R270 I R90 R180
O O H D V R180 R270 I R90
H H D V O R90 R180 R270 I

TABLE 3. The cosets of C4 in D4

I R90 R180 R270 D V O H
TABLE 4. There are two cosets of C4 in D4.

I [12] [13] [14] [23] [24]
[34] [12][23] [13][32] [12][24] [14][42] [13][34]

[14][43] [23][34] [24][43] [12][34] [13][24] [14][23]
[12][24][43] [12][23][34] [13][32][24] [13][34][42] [14][42][23] [14][43][32]

TABLE 5. The elements of A4 inside S4.

Here is an example. Consider the group D4 with the subgroup C4. Here is
the group table for D4. Each coset occurs in multiple rows. I have colored
just one occurence of each coset. Different colors represent different cosets.

A more concise way of looking at the cosets is by listing each element of
the group and coloring two elements the same if they are in the same coset.
This is done in Table ??.

Let’s find all the cosets of A4 in S4. We begin by listing the elements of S!.
To make the notation easier, we drop the arrows from the notation we’ve
used previously. We write each element as the combination of transposi-
tions (leaving out the ◦), to make it easy to tell if an element is in A4 or not.
The elements in A4 have been shaded red. They also form one of our cosets.
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Here is another example. Consider the element x = [1234] in S4. Let H =
〈x〉. Find all the cosets of H in S4. Begin by listing the elements of H:

I
[1234]

[1234][1234] = [13][24]
[1234][1234][1234] = [1432]

The next lemma will be helpful in continuing our analysis:

Lemma 3. Let G be a finite group and H a subgroup. Then the following
hold:

(a) If x is in the coset [g] then [x] = [g]. (Different cosets have no ele-
ments in common.)

(b) H is a coset of H in G.
(c) All cosets have the same number of elements as H.

Proof. (1) Suppose that x is in the coset [g]. This means that there is an
element h in H so that g ◦ h = x. Notice that g = x ◦ h−1. We must show
that every element in [x] is in [g] and every element of [g] is in [x]. Suppose
that y is in [x]. This means that there is an element h′ in H so that x◦h′ = y.
This means that g◦ (h◦h′) = y. Since H is a group, h◦h′ is in H. Thus, y is
in [g]. Now suppose that g′ is in [g]. There exists h′ so that g′ = g◦h′. This
implies that g′ = (x◦h−1)◦h′. Thus, g′ is in [x].

(2) I claim that [I] = H. By definition,

[I] = {y : there exists some h in H with I ◦h = y}.

For every y, however, I◦ y = y. Thus, [I] = H.

(3) Let [g] be a coset of H in G. We match every element of [g] with an
element of H and every element of H with an element of G so that different
elements are not matched to the same element. Here is the matching: Let
g◦h be an element of [g] with h in H. Match g◦h with h. Notice that every
element h in H is matched with some element in [g]. Notice that if g ◦ h is
matched with h′ then g◦h = g◦h′ and so h = h′. This shows that different
elements of [g] are matched with different elements of H. Thus [g] and H
have the same number of elements. !

Notice that since all the cosets of H in G are disjoint and since they all have
the same number of elements, we automatically have proved Lagrange’s
theorem.
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We can use these observations to study H = 〈[1234]〉 in S4. We can con-
clude, first of all, that H is one of our cosets. Here is a list of the elements
of S4 with the elements of H colored in red.

I [12] [13] [14] [23] [24]
[34] [12][34] [13][24] [14][23] [123] [132]
[124] [142] [134] [143] [234] [243]
[1234] [1243] [1324] [1342] [1423] [1432]

By LaGrange’s theorem we should expect 24/4 = 6 other cosets. Let’s
begin by considering

[
[12]

]
. By calculation, we find

[12][1234] = [234]
[12][[13][24] = [1324]
[12][1432] = [143]

Let’s color that coset blue.

I [12] [13] [14] [23] [24]
[34] [12][34] [13][24] [14][23] [123] [132]
[124] [142] [134] [143] [234] [243]
[1234] [1243] [1324] [1342] [1423] [1432]

Following the same pattern, it’s not too hard to discover that these are the
other cosets:

I [12] [13] [14] [23] [24]
[34] [12][34] [13][24] [14][23] [123] [132]
[124] [142] [134] [143] [234] [243]
[1234] [1243] [1324] [1342] [1423] [1432]

If G is a group and H is a subgroup of G, the number of cosets of H in
G is called the index of H in G. The index of H in G is denoted [G : H].
Lagrange’s theorem can be stated as

Theorem 4. (LaGrange) For a finite group G containing a subgroup H:

|H|[G : H] = |G|.

Exercise 15. (a) Suppose that H is a subgroup of D8. How many ele-
ments might H have?

(b) Suppose that H is a subgroup of S4. How many elements might H
have?

(c) The index of An in Sn is two. How many elements does An have?
(d) Suppose that H is a subgroup of a cyclic group Cp where p is a prime

number. How many elements might H have?
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We have seen various ways of describing the groups Dn and Sn using differ-
ent generating sets. In general, it is a difficult problem to explicitly describe
a given group, whether or not it is a group of symmetries. Using an exten-
sion of LaGrange’s theorem, though, we can learn somethings.

Definition 4. Suppose that G is a group of symmetries of an object X . Let
x be a point of X . Define the orbit of x to be the set of all points y in X .
such that there is a symmetry in G which takes x to y. Denote this set by
orbG(x).

Let x be a vertex of the square. The group D4 is the group of all symmetries
of the square. A symmetry in D4 takes x to another vertex, and we can send
x to any vertex we want to by choosing an appropriate symmetry in D4.
Thus, orbD4(x) is the set of vertices of the square.

The group G = {I,R180} is a subgroup of D8. The set orbG(x) consists of
the vertex x and the vertex directly opposite it on the square.

Definition 5. Suppose that G is a group of symmetries of an object X . Let
x be a point of X . The set of group elements g which don’t move x is called
the stabilizer of x in G. It is denoted stabG(x).

Let x be the upper left vertex of the square, then stabD4(x) = {I,D} since
every element of D4 except the identity and the diagonal reflection moves x
to some other vertex. If x is the center of the square, then stabD4(x) = D4,
since no element of D4 moves the center of the square.

Exercise 16. Prove that stabG(x) is a subgroup of G for any given point x.

Theorem 5. (Orbit-Stabilizer) Suppose that G is a group of symmetries of
an object X . For any point x in X ,

|orbG(x)| · |stabG(x)| = |G|.

Proof. We simply need to show that |orbG(x)| = [G : stabG(x)]. Let [g]
be a coset of stabG(x) in G. Match the coset [g] with the point g(x) in
orbG(x). Notice that if g and g′ are both in [g] then we have g′ = g ◦ h for
some h in stabG(x). Then g′(x) = g ◦ h(x). Since h(x) = x, g′(x) = g(x)
and so this matching is well defined. Notice also that ever point in the orbit
of x is matched with some coset and that if g(x) = g′(x) then g−1◦g′(x) = x.
This implies that g−1 ◦ g is in stabG(x). It turns out that this implies that
[g] = [g′].

Thus, each coset of stabG(x) is matched with one point in orbG(x) and
different cosets are matched with different points. Since each point of the


