square then a rotation will never change the fact that the arrows point counterclockwise. A reflection, however, does change the arrows from being counterclockwise to being clockwise. Thus, no combination of rotations can ever produce a reflection.

Exercise 7. Show that it is possible to generate D_n using only a reflection and a rotation. How many degrees must the rotation rotate? Does it matter what the reflection does?

Let's study the symmetric groups.

Exercise 8. What is the fewest number of elements of S_3 that will generate S_3 ? List several possibilities for generating sets with the fewest possible number of elements.

A **transposition** in a symmetric group \mathbb{S}_n is a symmetry that swaps the position of two dots.

Theorem 2. The collection of all transpositions generates S_n for $n \ge 2$.

Proof. We must show that every permutation of *n* dots can be written as the combination of transpositions. This is clearly true for n = 2 and can easily be verified for n = 3 using Table 2.

Let *T* be in \mathbb{S}_4 . Number the dots 1, 2, 3, 4. The effect of *T* on the dots can be written in the following form

1	2	3	4
\downarrow	\downarrow	\downarrow	\downarrow
T(1)	T(2)	T(3)	T(4)

T(1) is one of the numbers 1, 2, 3, or 4. Suppose first that T(1) = 1. Then *T* is a symmetry of the three dots labelled 2, 3, and 4 and therefore lives in S_3 . We have already seen that every symmetry in S_3 can be written as a combination of transpositions. Thus, *T* can be written as a combination of transpositions.

Suppose that $T(1) \neq 1$. Let *C* be the 2-cycle $[1 \leftrightarrow T(1)]$. Let $S = C \circ T$. Then *S* can be described as:

1	2	3	4
\downarrow	\downarrow	\downarrow	\downarrow
T(1)	T(2)	T(3)	T(4)
\downarrow	\downarrow	\downarrow	\downarrow
1	C(T(2))	C(T(3))	C(T(4))

Notice, therefore that *S* is a symmetry of dots 2, 3, and 4. It is, therefore a product of transpositions. Notice that $C \circ C = \mathbf{I}$. We have

$$S = C \circ T$$

Thus,

$$C \circ S = (C \circ C) \circ T$$

$$C \circ S = I \circ T$$

$$C \circ S = T.$$

Thus, *T* is the combination of transpositions. A similar argument shows that every symmetry in S_5 is the combination of transpositions. We then boot strap our way to conclude that every symmetry in S_n is a combination of transpositions for any $n \ge 2$.

Exercise 9. How many transpositions are there in \mathbb{S}_n ?

Exercise 10. Show that the following set of transpositions generate \mathbb{S}_n for $n \ge 2$:

$$[1 \leftrightarrow 2] \\ [2 \leftrightarrow 3] \\ [3 \leftrightarrow 4] \\ \vdots \\ [n-1 \leftrightarrow n].$$

These are called **adjacent transpositions**.

Exercise 11. How many adjacent transpositions are there in \mathbb{S}_n ?