square then a rotation will never change the fact that the arrows point counterclockwise. A reflection, however, does change the arrows from being counterclockwise to being clockwise. Thus, no combination of rotations can ever produce a reflection.

Exercise 7. Show that it is possible to generate D_{n} using only a reflection and a rotation. How many degrees must the rotation rotate? Does it matter what the reflection does?

Let's study the symmetric groups.
Exercise 8. What is the fewest number of elements of \mathbb{S}_{3} that will generate \mathbb{S}_{3} ? List several possibilities for generating sets with the fewest possible number of elements.

A transposition in a symmetric group \mathbb{S}_{n} is a symmetry that swaps the position of two dots.

Theorem 2. The collection of all transpositions generates \mathbb{S}_{n} for $n \geq 2$.
Proof. We must show that every permutation of n dots can be written as the combination of transpositions. This is clearly true for $n=2$ and can easily be verified for $n=3$ using Table 2 .

Let T be in \mathbb{S}_{4}. Number the dots $1,2,3,4$. The effect of T on the dots can be written in the following form

1	2	3	4
\downarrow	\downarrow	\downarrow	\downarrow
$T(1)$	$T(2)$	$T(3)$	$T(4)$

$T(1)$ is one of the numbers $1,2,3$, or 4 . Suppose first that $T(1)=1$. Then T is a symmetry of the three dots labelled 2,3 , and 4 and therefore lives in \mathbb{S}_{3}. We have already seen that every symmetry in \mathbb{S}_{3} can be written as a combination of transpositions. Thus, T can be written as a combination of transpositions.

Suppose that $T(1) \neq 1$. Let C be the 2 -cycle $[1 \leftrightarrow T(1)]$. Let $S=C \circ T$. Then S can be described as:

Notice, therefore that S is a symmetry of dots 2,3 , and 4 . It is, therefore a product of transpositions. Notice that $C \circ C=\mathbf{I}$. We have

$$
S=C \circ T
$$

Thus,

$$
\begin{array}{ccc}
C \circ S & = & (C \circ C) \circ T \\
C \circ S= & \mathbf{I} \circ T \\
C \circ S= & T .
\end{array}
$$

Thus, T is the combination of transpositions. A similar argument shows that every symmetry in \mathbf{S}_{5} is the combination of transpositions. We then boot strap our way to conclude that every symmetry in \mathbb{S}_{n} is a combination of transpositions for any $n \geq 2$.

Exercise 9. How many transpositions are there in \mathbb{S}_{n} ?
Exercise 10. Show that the following set of transpositions generate \mathbb{S}_{n} for $n \geq 2$:

$$
\begin{gathered}
{[1 \leftrightarrow 2]} \\
{[2 \leftrightarrow 3]} \\
{[3 \leftrightarrow 4]} \\
\vdots \\
{[n-1 \leftrightarrow n] .}
\end{gathered}
$$

These are called adjacent transpositions.
Exercise 11. How many adjacent transpositions are there in \mathbb{S}_{n} ?

