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If a group has only finitely many elements, in principle we can make up a
group table like we did for the group of symmetries of a square. Here is
another example. In this example the object will be three indistinguishable
dots: eee. You should think of these points, which means that reflection
about a horizontal line will not count as one of our symmetries. Our group
will be the group of symmetries of these dots. We won’t insist that the
symmetry preserve the distance between the dots. One example of such a
symmetry is swapping the first two dots. As with the square, we’ll add some
colors to the dots: e ee. This will enable us to keep track of the different
behaviour of different symmetries.

To recap: our group is G = Sym(eee). We need names for the different
symmetries of the dots. Denote the action of swapping the first two dots by
[1 «> 2]. Notice that this changes the colors of the dots:

[12](e0e)=00e.

We can also move the first dot to the second position, the second dot to the
third position, and the third dot to the first position. Denote that symmetry
as [ — 2 — 3 —]. Notice that this one also changes the colors:

[1—2—3—>](eee)=00oe.

In the same vein, here is a list of more symmetries of the three dots:

I
[1 2]

[1 < 3]
[2 < 3]
[1—2—3-]
[1—3—2-—]

Is this list complete? The answer is “yes”. Here’s how to tell. Applying
each symmetry to the colored dots e @ @ produces a new way of coloring
the dots. If two symmetries produce the same coloring, they have the same
effect on the object (the uncolored dots) and so are considered to be the
same symmetry. Given the initial coloring of the dots, no two of the sym-
metries in the list above produce the same coloring. All those symmetries
are, therefore, different. But is the list complete? We still haven’t answered
that question. To do so, we’ll argue that there are exactly 6 symmetries of
eee. Since we have six distinct symmetries in our list, our list must be
complete.
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Each symmetry produces a unique coloring of the dots (given the initial
coloring: e @ e. There are three ways of coloring the first dot, two ways of
coloring the second, and one way of coloring the third. Thus there are six
total ways of coloring the dots and, therefore, six total symmetries. Thus
our list is complete and no symmetry is listed more than once.

We can now make up a group table for G. To do so, we go through a process
similar to what we did for the symmetries of the square. For example, to
compute
[1<2]o[l 52—3—].
Look at what it does to the colors:
[12]o[]l 52 —3—](eee) =[l —2](eee) =cee.
Notice that this is the same coloring as the one given by [2 < 3]:
2 3](e0e) =00oe.

Thus,
[1-2]o[l 52—3—>]=[2< 3]

Challenge! Find a more efficient way of computing the effect of combining
two symmetries of e @ ®.

For the complete group table for G, see Table 2.

Some groups are so common that they deserve special names. Let D,, denote
the symmetry group of a regular n—gon. Thus, the symmetry group of the
square (which we studied previously) is denoted D4. The symmetry group
of n indistinguishable dots is denoted S,,. Thus, the symmetry group of
three indistinguishable dots (which we just studied) is denoted S3.

Exercise 4. (a) Show that every symmetry of 3 indistinguishable dots

is also a symmetry of an equilateral triangle.

(b) Show that every symmetry of an equilateral triangle is also a sym-
metry of 3 indistinguishable dots.

(c) Explain why the previous two exercises show that D3 is the same as
Ss.

(d) Show that D,, contains 2n symmetries.

(e) Show that S, contains n! =n(n—1)(n—2)...(3

(f) Explain why D,, is not the same as S, for n > 4.

)(2)(1) symmetries.
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[—¢—T—1] I €= 1] [z 1] € <1 [—z—¢—1]||[<c—¢g—1]
I [—7—¢—1] [z 1] [€ <1 [€ < 1] [—¢—c—1]||[¢—T—1]
[T 1] €< 1] I [(—¢—Cc—1]|[—T—¢—1] € <1l [€ <1
€ <1 2= 1] [—7—¢—1] I [—¢—7—1] € <1] €< 1]
€ < 1] ¢ =1l [—¢—c—1]|[<T—¢g—1] I [T 1] [z 1]
[—t—¢—1]|[—¢c—T—1] ¢ <] [€ < 1] [T 1] I I
[—z—c—1]|[-c<c<1]| [« [c < 1] [t 1] I | Igolg
I§

s

TABLE 2. The group table for Ss.



