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1. PRELIMINARIES

A mapping or transformation of a set X is a function which takes each
point of X to some other point of X . A transformation is a automorphism
or symmetry of X if it preserves a given “structure” of X . For example,
automorphisms of the xy-plane, preserve distance: the distance between
points A and B before the automorphism is the same as the distance between
A′ and B′ after the automorphism (the automorphism takes A to A′ and B to
B′.) We always require our transformations and automorphisms to be “one-
to-one”. This means that two distinct points A and B are never mapped to
the same point A′ = B′.

Two important examples of situations where we care about automorphisms
are:

(a) Symmetries of the plane (which preserve distance)
(b) Symmetries of a graph which preserve the relationship between ver-

tices and edges.

We’ll discuss symmetries of graphs more later, but we’ll first study sym-
metries of the plane. It turns out that every symmetry of the plane is either
a reflection (about some line), a rotation (about some point of with some
angle), a translation (in some direction by some distance), or a combination
of these.

Our first important example will concern symmetries of a square in the
plane. This means we want to list all symmetries of the plane which take
the square to itself. In other words, points on the square can be moved
about within the square, but not outside the square. Two symmetries are
considered to be the same if they have the same effect on the points of the
square. For example a 90◦ rotation clockwise is the same as a 270◦ rotation
counterclockwise, because all the points end up in the same spot. This will
make more sense when we look at specific examples.
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2. GROUPS

2.1. Group Tables. Consider the square below. On the left is the plain old
square; on the right some axes of reflection are drawn. Reflecting the square
about one of these axes produces a square which is indistinguishable from
the first. We call the act of reflecting the square across one of these lines, a
reflection symmetry.

D

V

O

H

FIGURE 1. The symmetries of the square
.

In addition to the reflection symmetries, we can also rotate the square by
multiples of 90◦ either clockwise or counter-clockwise. Denote a coun-
terclockwise rotation of θ degrees by Rθ . Figure 2 shows the effects of
repeatedly applying R90. For example, performing R90 once moves the pur-
ple vertex from the upper right to the upper left and cycles the other colored
vertices around ”one notch”.

At this point, we should be a little more precise. A symmetry of an object
is a way of moving the object so that after the motion the object cannot be
distinguished from the the way it was before the motion. When we discuss
shapes (like a square) lying on the plane we will insist that the motion not
change the distance between two arbitrary points. Sometimes, for other
objects, we will not insist that distance remain unchanged. It will usually be
clear from the context whether or not we assume distances are unchanged.

Even though a symmetry is a motion or action, we will usually think of
it as an object of study in its own right. To be able to tell two different
symmetries apart we will often decorate the object (e.g. the square) and
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R90 R90

R90

R90

FIGURE 2. Applying R90 to the square. The vertices have
been colored to exhibit the effect of R90.

look at what happens to the decorations. For example, the rotation R90
moves the colors of the vertices counter-clockwise. Two symmetries are
”the same” if they have the same effect on our decorations. For example,
performing R90 and then performing R180 is the same as performing R270.
Similarly, performing R270 is the same as rotating the square by 90◦ in a
clockwise direction.

So far, we have listed 7 symmetries of the square:

R90,R180,R270,D,V,O,H.

In theory, we could produce new symmetries of the square by performing
one of these symmetries. For example, performing R90 and then performing
R90 again is the same as performing R180. There is also the symmetry I,
which consists of doing nothing at all. If S1 and S2 are symmetries, if we
first perform S1 and then perform S2 we call the resulting symmetry S2 ◦S1.
Notice that we should read this expression right to left.

Question: Is our list of symmetries: I, R90, R180, R270, D, V , O, H com-
plete?

Recall that D, V , O, and H are the reflections of the square about the lines
indicated in Figure 1. Let’s make a table:
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S1

S2

S2 ◦S1 I R90 R180 R270 D V O H
I

R90
R180
R270

D
V
O
H

To fill in the table, notice that we must have S ◦ I = S no matter what sym-
metry S is, since I means do nothing. Similarly, I ◦ S = S no matter what
symmetry S is. For example, I ◦R90 = R90 since rotating by 90◦ and then
doing nothing is the same as rotating by 90◦. This allows us to fill in the
first row and the first column:

S1

S2

S2 ◦S1 I R90 R180 R270 D V O H
I I R90 R180 R270 D V O H

R90 R90
R180 R180
R270 R270

D D
V V
O O
H H

Next, notice that if we perform R90 and then perform R90 we have simply
rotated the square 180◦. That is, we have performed R180. Using similar
lines of reasoning we can fill in the upper left quadrant of the table:

S1

S2

S2 ◦S1 I R90 R180 R270 D V O H
I I R90 R180 R270 D V O H

R90 R90 R180 R270 I
R180 R180 R270 I R90
R270 R270 I R90 R180

D D
V V
O O
H H
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Now we can work on filling in the rest of the table. For example, to calculate
O◦R270 we remember that this means that we rotate the square by 270◦ and
then reflect over the off-diagonal axis. The left side of Figure 3 shows this
operation. By examining the dots we see that O◦R270 = V . The right side
of Figure 3 shows that R270 ◦O = H. Notice that this means that

O◦R270 6= R270 ◦O.

R270 ◦O = H

R270

O

O

R270

O◦R270 = V

FIGURE 3. Calculating O◦R270 and R270 ◦O

Similar calculations allow us to fill in the rest of the table. See Table 1.

S1

S2

S2 ◦S1 I R90 R180 R270 D V O H
I I R90 R180 R270 D V O H

R90 R90 R180 R270 I H D V O
R180 R180 R270 I R90 O H D V
R270 R270 I R90 R180 V O H D

D D V O H I R90 R180 R270
V V O H D R270 I R90 R180
O O H D V R180 R270 I R90
H H D V O R90 R180 R270 I

TABLE 1. The group of symmetries of a square

Question: What patterns do you notice in the table?
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Possible patterns include:
◦ every symmetry appears exactly once in each row and column.
◦ performing a reflection and then another reflection is the

same as performing a rotation.
◦ For each symmetry, there is another symmetry which “undoes it”.

The symmetries of the square are an example of what mathematicians call
a group.

Definition 1. A group consists of a set G and an operation ◦ which com-
bines two elements of G into a third element of G. That is, if a and b are in
G then a◦b is also in G. Furthermore, we require the following properties
to hold:

• (Associative) For any three elements a,b,c in G,

a◦ (b◦ c) = (a◦b)◦ c.

• (Identity) There exists an element I in G (called the identity ele-
ment) so that for every a in G,

a◦ I = I ◦a = a.

• (Inverses) For each a in G there exists some b in G so that

a◦b = b◦a = I.
The element b is called the inverse of a and is sometimes written
a−1.

It need not be the case that for all a and b in X , a ◦ b = b ◦ a. That is, the
group is not necessarily commutative. Indeed, the symmetries of the square
are not commutative. Here is a fundamental observation which allows us to
apply mathematics to the study of symmetry:

Theorem 1. For any object X , the set of symmetries of the object form a
group. We denote the group Sym(X). The operation is simply: first do one
symmetry and then do another symmetry.

Exercise 1. For the group of symmetries of the square do the following:

• Pick three elements a,b,c at random and show that

a◦ (b◦ c) = (a◦b)◦ c.

• Explain how the fact that an identity exists shows up in the table.
The first row and the first column are exactly the same as the
header column and the header row.

• Explain how the fact that each symmetry has an inverse symmetry
shows up in the table.
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Every row and every column contains I.

We will occasionally make use of the following terminology:

• The integers are the positive and negative whole numbers and zero:

{. . . ,−2,−1,0,1,2, . . .}.

They are denoted by Z.
• The rational numbers are all the numbers which can be written as

fractions of two integers. 1
2 , 3.0000009, and −17 are examples of

rational numbers. The set of rational numbers is denoted Q.
• The set of real numbers is the set of all numbers on the number

line. It includes the integers and rational numbers as well as other
numbers like

√
2 and π . The set of real numbers is denoted R.

• The set of all real numbers except for zero is denoted R∗.

Exercise 2. Decide whether or not the following are groups.

(a) Z with the operation of +.
(b) Z with the operation of −.
(c) R with the operation of +.
(d) R with the operation of · (multiplication).
(e) R∗ with the operation of ·.

(a), (c), and (e) are groups. (b) is not a group because subtraction
is not associative. (d) is not a group because 0 does not have a
multiplicative inverse. (There is no number x so that 0 · x = 1.)

Notice that the groups in the previous exercise are not described as the sym-
metries of an object. A common philosophy in mathematics is: If you want
to study an object, study its group of symmetries; if you want to study a
group find an object for which the group is a group of symmetries.

Exercise 3. Show that the rotations of the square form a group. (Consider
I to be a rotation.)

If a group has only finitely many elements, in principle we can make up a
group table like we did for the group of symmetries of a square. Here is
another example. In this example the object will be three indistinguishable
dots: . You should think of these points, which means that reflection
about a horizontal line will not count as one of our symmetries. Our group
will be the group of symmetries of these dots. We won’t insist that the
symmetry preserve the distance between the dots. One example of such a
symmetry is swapping the first two dots. As with the square, we’ll add some
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colors to the dots: . This will enable us to keep track of the different
behaviour of different symmetries.

To recap: our group is G = Sym( ). We need names for the different
symmetries of the dots. Denote the action of swapping the first two dots by
[1↔ 2]. Notice that this changes the colors of the dots:

[1↔ 2]( ) = .

We can also move the first dot to the second position, the second dot to the
third position, and the third dot to the first position. Denote that symmetry
as [1→ 2→ 3→]. Notice that this one also changes the colors:

[1→ 2→ 3→]( ) = .

In the same vein, here is a list of more symmetries of the three dots:

I
[1↔ 2]
[1↔ 3]
[2↔ 3]

[1→ 2→ 3→]
[1→ 3→ 2→]

Is this list complete? The answer is “yes”. Here’s how to tell. Applying
each symmetry to the colored dots produces a new way of coloring
the dots. If two symmetries produce the same coloring, they have the same
effect on the object (the uncolored dots) and so are considered to be the
same symmetry. Given the initial coloring of the dots, no two of the sym-
metries in the list above produce the same coloring. All those symmetries
are, therefore, different. But is the list complete? We still haven’t answered
that question. To do so, we’ll argue that there are exactly 6 symmetries of

. Since we have six distinct symmetries in our list, our list must be
complete.

Each symmetry produces a unique coloring of the dots (given the initial
coloring: . There are three ways of coloring the first dot, two ways of
coloring the second, and one way of coloring the third. Thus there are six
total ways of coloring the dots and, therefore, six total symmetries. Thus
our list is complete and no symmetry is listed more than once.

We can now make up a group table for G. To do so, we go through a process
similar to what we did for the symmetries of the square. For example, to
compute

[1↔ 2]◦ [1→ 2→ 3→].
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Look at what it does to the colors:

[1↔ 2]◦ [1→ 2→ 3→]( ) = [1↔ 2]( ) = .

Notice that this is the same coloring as the one given by [2↔ 3]:

[2↔ 3]( ) = .

Thus,
[1↔ 2]◦ [1→ 2→ 3→] = [2↔ 3].

Challenge! Find a more efficient way of computing the effect of combining
two symmetries of .

For the complete group table for G, see Table 2.

Some groups are so common that they deserve special names. Let Dn denote
the symmetry group of a regular n–gon. Thus, the symmetry group of the
square (which we studied previously) is denoted D4. The symmetry group
of n indistinguishable dots is denoted Sn. Thus, the symmetry group of
three indistinguishable dots (which we just studied) is denoted S3.

Exercise 4. (a) Show that every symmetry of 3 indistinguishable dots
is also a symmetry of an equilateral triangle.

(b) Show that every symmetry of an equilateral triangle is also a sym-
metry of 3 indistinguishable dots.

(c) Explain why the previous two exercises show that D3 is the same as
S3.

(d) Show that Dn contains 2n symmetries.
(e) Show that Sn contains n! = n(n−1)(n−2) . . .(3)(2)(1) symmetries.
(f) Explain why Dn is not the same as Sn for n≥ 4.

2.2. Generators. Although every (finite) group has a group table, for all
but the smallest groups writing down the group table is very inefficient.
A more efficient method is to write down the fewest number of elements
possible so that every other group element is a combination of that small
number of group elements. That small number of elements from which
every other group element can be generated will be called a set of generators
for the group.

To begin our discussion, we return to consideration of the group D4, the
symmetries of the square. We want to find a list of elements S in D4 so that
every element in D4 can be written as a combination of those elements in
our list. We say that S generates D4 and that S is a set of generators for
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S 1

S 2

S 2
◦S

1
I

[1
↔

2]
[1
↔

3]
[2
↔

3]
[1
→

2
→

3
→

]
[1
→

3
→

2
→

]
I

I
[1
↔

2]
[1
↔

3]
[2
↔

3]
[1
→

2
→

3
→

]
[1
→

3
→

2
→

]
[1
↔

2]
[1
↔

2]
I

[1
→

3
→

2
→

]
[1
→

2
→

3
→

]
[2
↔

3]
[1
↔

3]
[1
↔

3]
[1
↔

3]
[1
→

2
→

3
→

]
I

[1
→

3
→

2
→

]
[1
↔

2]
[2
↔

3]
[2
↔

3]
[2
↔

3]
[1
→

3
→

2
→

]
[1
→

2
→

3
→

]
I

[1
↔

3]
[1
↔

2]
[1
→

2
→

3
→

]
[1
→

2
→

3
→

]
[1
↔

3]
[2
↔

3]
[1
↔

2]
[1
→

3
→

2
→

]
I

[1
→

3
→

2
→

]
[1
→

3
→

2
→

]
[2
↔

3]
[1
↔

2]
[1
↔

3]
I

[1
→

2
→

3
→

]

TABLE 2. The group table for S3.
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D4. Of course it is possible to just put every element of D4 into S, but this
is not very useful. We want S to be as small as possible.

First, notice, that there are two types of elements in D4: reflections and rota-
tions (count the identity as a rotation). Combining two reflections produces
a rotation, and examing Table 1 shows that every rotation can be written
as a combination of two reflections. Thus, the reflections generate D4. We
could, therefore, let S be the set of reflections: D, V , O, and H.

Question: What is the fewest number of reflections that will generate D4?

We need at least two reflections, since combining a reflection with itself
produces I. Consider the reflections D and H. H ◦D = R90 and so we can
definitely obtain

I,D,H,R90.

Once we have R90, we can obtain

R90,R180, and R270.

Exercise 5. Write R180 and R270 as combinations of D and H.

Question: Can we obtain all the reflections using just D and H?

Yes. We already have D and H, so we just need O and V . We also already
know that we can obtain all the rotations. Notice that R180 ◦D = O and
R270 ◦D = V . Thus the reflections D and H generate all of D4.

Exercise 6. (a) Show that D and V generate D4.
(b) Show that R90 and any reflection generate D4.
(c) Show that H and V do not generate D4.
(d) Show that the rotations do not generate D4.

For the last question, it may be helpful to notice that if you put arrows on
the sides of the square so that they all point counter-clockwise around the
square then a rotation will never change the fact that the arrows point coun-
terclockwise. A reflection, however, does change the arrows from being
counterclockwise to being clockwise. Thus, no combination of rotations
can ever produce a reflection.

Exercise 7. Show that it is possible to generate Dn using only a reflection
and a rotation. How many degrees must the rotation rotate? Does it matter
what the reflection does?

Let’s study the symmetric groups.

Exercise 8. What is the fewest number of elements of S3 that will generate
S3? List several possibilities for generating sets with the fewest possible
number of elements.
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A transposition in a symmetric group Sn is a symmetry that swaps the
position of two dots.

Theorem 2. The collection of all transpositions generates Sn for n≥ 2.

Proof. We must show that every permutation of n dots can be written as the
combination of transpositions. This is clearly true for n = 2 and can easily
be verified for n = 3 using Table 2.

Let T be in S4. Number the dots 1, 2, 3, 4. The effect of T on the dots can
be written in the following form

1 2 3 4
↓ ↓ ↓ ↓

T (1) T (2) T (3) T (4)

T (1) is one of the numbers 1, 2, 3, or 4. Suppose first that T (1) = 1. Then
T is a symmetry of the three dots labelled 2, 3, and 4 and therefore lives
in S3. We have already seen that every symmetry in S3 can be written as a
combination of transpositions. Thus, T can be written as a combination of
transpositions.

Suppose that T (1) 6= 1. Let C be the 2–cycle [1↔ T (1)]. Let S = C ◦T .
Then S can be described as:

1 2 3 4
↓ ↓ ↓ ↓

T (1) T (2) T (3) T (4)
↓ ↓ ↓ ↓
1 C(T (2)) C(T (3)) C(T (4))

Notice, therefore that S is a symmetry of dots 2, 3, and 4. It is, therefore a
product of transpositions. Notice that C ◦C = I. We have

S = C ◦T

Thus,
C ◦S = (C ◦C)◦T
C ◦S = I◦T
C ◦S = T.

Thus, T is the combination of transpositions. A similar argument shows
that every symmetry in S5 is the combination of transpositions. We then
boot strap our way to conclude that every symmetry in Sn is a combination
of transpositions for any n≥ 2. �

Exercise 9. How many transpositions are there in Sn?
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Exercise 10. Show that the following set of transpositions generate Sn for
n≥ 2:

[1↔ 2]
[2↔ 3]
[3↔ 4]

...
[n−1↔ n].

These are called adjacent transpositions.

Exercise 11. How many adjacent transpositions are there in Sn?

2.3. Relations. Suppose that G is a group and that we have a list of gen-
erators s1,s2, . . . ,sn for G. Recall that this means that every element of the
group can be written as a combination of the si and their inverses. Is this
enough to specify the group? No – many different groups can be gener-
ated by n generators. To specify the which group we are discussing, we
also need to list some relations. Relations are equations which tell us that
certain combinations of the generators are equal to I. Here is an example.

Suppose that G is a group with one generator s. Denote the combination of
s with itself n times by sn. Let s−n denote the combination of s−1 with itself
n times. Then the following list includes all the elements of G:

. . . ,s−4,s−3,s−2,s−1,I,s1,s2,s3,s4, . . .

There are infinitely many items in this list. If G has no relations then this is
the list of elements in G with no repetitions. Suppose however, that G has
the relation:

R1 : s3 = I
Then anytime we see s ◦ s ◦ s we may cancel it (i.e. replace it with I). For
example, if R1 holds

s8 = (s◦ s◦ s)◦ (s◦ s◦ s)◦ s◦ s = s◦ s = s2

Some thought shows that if G has one generator (s) and the relation R1 then

G = {I,s,s2}.
We can write this as G = 〈s|s3 = I〉. Notice that if s3 = I, then s−3 = I since

s−3 ◦ s3 = s−3 ◦ I⇒ I = s−3.

What happens if G has the relation R1 and the relation

R2 : s4 = I?

Notice then that:
s = s4 ◦ s−3 = s4 ◦ I = I
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by first applying R1 and then applying R2. Thus, the group

〈s|s3 = I,s4 = I〉
is just the group consisting only of the identity.

It turns out that every group has a presentation in terms of a list of generators
and a list of relations. Here are some common group presentations:

Cn 〈 s | sn = I 〉

Dn 〈 s, t | sn = I, t2 = I 〉

Sn

〈
s1,s2, . . . ,sn |

s2
i = I

sisi+1si = si+1sisi+1
sis j = s jsi if |i− j| 6= 1

〉

3. SUBGROUPS

Let G be a group with operation ◦. A subset H of G is a subgroup if H is a
group with operation ◦.

Exercise 12. Show that the set of rotations in Dn is a subgroup of Dn. It is
usually denoted Cn.

Exercise 13. Let An be the set of elements in Sn which can be written as
a product of an even number of transpositions. It is called the alternating
group of n dots. Show that An is a subgroup of Sn.

Exercise 14. Let x be an element of a group G. Show that the set of all
combinations of x with itself and with its inverse is a subgroup of G. It is
denoted by 〈x〉. Explain why Cn = 〈x〉 for some x in D2n. Specify what x is.

Definition 2. The order of a finite group is simply the number of elements
in the group.

We now come to the most important theorem in group theory.

Definition 3. Suppose that H is a subgroup of a finite group G. Then the
order of G is divisible by the order of H.

For example, the order of Dn is twice the order of Cn.

To begin the proof of the theorem we need some more concepts. For an
element g in G, denote by [g] the set:

{g◦h : h is in H}.
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S1

S2

S2 ◦S1 I R90 R180 R270 D V O H
I I R90 R180 R270 D V O H

R90 R90 R180 R270 I H D V O
R180 R180 R270 I R90 O H D V
R270 R270 I R90 R180 V O H D

D D V O H I R90 R180 R270
V V O H D R270 I R90 R180
O O H D V R180 R270 I R90
H H D V O R90 R180 R270 I

TABLE 3. The cosets of C4 in D4

I R90 R180 R270 D V O H
TABLE 4. There are two cosets of C4 in D4.

I [12] [13] [14] [23] [24]
[34] [12][23] [13][32] [12][24] [14][42] [13][34]

[14][43] [23][34] [24][43] [12][34] [13][24] [14][23]
[12][24][43] [12][23][34] [13][32][24] [13][34][42] [14][42][23] [14][43][32]

TABLE 5. The elements of A4 inside S4.

The set [g] is called the coset of G. If we have a group table for G, the set
[g] is simply the collection of all group elements in the row beginning with
g which are also in a column headed by an element of H.

Here is an example. Consider the group D4 with the subgroup C4. Here is
the group table for D4. Each coset occurs in multiple rows. I have colored
just one occurence of each coset. Different colors represent different cosets.

A more concise way of looking at the cosets is by listing each element of
the group and coloring two elements the same if they are in the same coset.
This is done in Table 4.

Let’s find all the cosets of A4 in S4. We begin by listing the elements of S4.
To make the notation easier, we drop the arrows from the notation we’ve
used previously. We write each element as the combination of transposi-
tions (leaving out the ◦), to make it easy to tell if an element is in A4 or not.
The elements in A4 have been shaded red. They also form one of our cosets.
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Here is another example. Consider the element x = [1234] in S4. Let H =
〈x〉. Find all the cosets of H in S4. Begin by listing the elements of H:

I
[1234]

[1234][1234] = [13][24]
[1234][1234][1234] = [1432]

The next lemma will be helpful in continuing our analysis:

Lemma 3. Let G be a finite group and H a subgroup. Then the following
hold:

(a) If x is in the coset [g] then [x] = [g]. (Different cosets have no ele-
ments in common.)

(b) H is a coset of H in G.
(c) All cosets have the same number of elements as H.

Proof. (1) Suppose that x is in the coset [g]. This means that there is an
element h in H so that g ◦ h = x. Notice that g = x ◦ h−1. We must show
that every element in [x] is in [g] and every element of [g] is in [x]. Suppose
that y is in [x]. This means that there is an element h′ in H so that x◦h′ = y.
This means that g◦ (h◦h′) = y. Since H is a group, h◦h′ is in H. Thus, y is
in [g]. Now suppose that g′ is in [g]. There exists h′ so that g′ = g◦h′. This
implies that g′ = (x◦h−1)◦h′. Thus, g′ is in [x].

(2) I claim that [I] = H. By definition,

[I] = {y : there exists some h in H with I ◦h = y}.

For every y, however, I◦ y = y. Thus, [I] = H.

(3) Let [g] be a coset of H in G. We match every element of [g] with an
element of H and every element of H with an element of G so that different
elements are not matched to the same element. Here is the matching: Let
g◦h be an element of [g] with h in H. Match g◦h with h. Notice that every
element h in H is matched with some element in [g]. Notice that if g ◦ h is
matched with h′ then g◦h = g◦h′ and so h = h′. This shows that different
elements of [g] are matched with different elements of H. Thus [g] and H
have the same number of elements. �

Notice that since all the cosets of H in G are disjoint and since they all have
the same number of elements, we automatically have proved Lagrange’s
theorem.
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We can use these observations to study H = 〈[1234]〉 in S4. We can con-
clude, first of all, that H is one of our cosets. Here is a list of the elements
of S4 with the elements of H colored in red.

I [12] [13] [14] [23] [24]
[34] [12][34] [13][24] [14][23] [123] [132]
[124] [142] [134] [143] [234] [243]
[1234] [1243] [1324] [1342] [1423] [1432]

By LaGrange’s theorem we should expect 24/4 = 6 other cosets. Let’s
begin by considering

[
[12]
]
. By calculation, we find

[12][1234] = [234]
[12][[13][24] = [1324]
[12][1432] = [143]

Let’s color that coset blue.

I [12] [13] [14] [23] [24]
[34] [12][34] [13][24] [14][23] [123] [132]
[124] [142] [134] [143] [234] [243]
[1234] [1243] [1324] [1342] [1423] [1432]

Following the same pattern, it’s not too hard to discover that these are the
other cosets:

I [12] [13] [14] [23] [24]
[34] [12][34] [13][24] [14][23] [123] [132]
[124] [142] [134] [143] [234] [243]
[1234] [1243] [1324] [1342] [1423] [1432]

If G is a group and H is a subgroup of G, the number of cosets of H in
G is called the index of H in G. The index of H in G is denoted [G : H].
Lagrange’s theorem can be stated as

Theorem 4. (LaGrange) For a finite group G containing a subgroup H:

|H|[G : H] = |G|.

Exercise 15. (a) Suppose that H is a subgroup of D8. How many ele-
ments might H have?

(b) Suppose that H is a subgroup of S4. How many elements might H
have?

(c) The index of An in Sn is two. How many elements does An have?
(d) Suppose that H is a subgroup of a cyclic group Cp where p is a prime

number. How many elements might H have?
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We have seen various ways of describing the groups Dn and Sn using differ-
ent generating sets. In general, it is a difficult problem to explicitly describe
a given group, whether or not it is a group of symmetries. Using an exten-
sion of LaGrange’s theorem, though, we can learn somethings.

Definition 4. Suppose that G is a group of symmetries of an object X . Let
x be a point of X . Define the orbit of x to be the set of all points y in X .
such that there is a symmetry in G which takes x to y. Denote this set by
orbG(x).

Let x be a vertex of the square. The group D4 is the group of all symmetries
of the square. A symmetry in D4 takes x to another vertex, and we can send
x to any vertex we want to by choosing an appropriate symmetry in D4.
Thus, orbD4(x) is the set of vertices of the square.

The group G = {I,R180} is a subgroup of D8. The set orbG(x) consists of
the vertex x and the vertex directly opposite it on the square.

Definition 5. Suppose that G is a group of symmetries of an object X . Let
x be a point of X . The set of group elements g which don’t move x is called
the stabilizer of x in G. It is denoted stabG(x).

Let x be the upper left vertex of the square, then stabD4(x) = {I,D} since
every element of D4 except the identity and the diagonal reflection moves x
to some other vertex. If x is the center of the square, then stabD4(x) = D4,
since no element of D4 moves the center of the square.

Exercise 16. Prove that stabG(x) is a subgroup of G for any given point x.

Theorem 5. (Orbit-Stabilizer) Suppose that G is a group of symmetries of
an object X . For any point x in X ,

|orbG(x)| · |stabG(x)|= |G|.

Proof. We simply need to show that |orbG(x)| = [G : stabG(x)]. Let [g]
be a coset of stabG(x) in G. Match the coset [g] with the point g(x) in
orbG(x). Notice that if g and g′ are both in [g] then we have g′ = g ◦ h for
some h in stabG(x). Then g′(x) = g ◦ h(x). Since h(x) = x, g′(x) = g(x)
and so this matching is well defined. Notice also that ever point in the orbit
of x is matched with some coset and that if g(x) = g′(x) then g−1◦g′(x) = x.
This implies that g−1 ◦ g is in stabG(x). It turns out that this implies that
[g] = [g′].

Thus, each coset of stabG(x) is matched with one point in orbG(x) and
different cosets are matched with different points. Since each point of the
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orbit of x is matched with some coset, the size of orbG(x) is equal to the
number of cosets which is [G : stabG(x)]. �

Let’s use this to do something interesting.

Let X be a cube in 3–space and let G = Sym(X). Let’s determine how many
symmetries are in G. Let x be a vertex of the cube. There is a symmetry
which sends x to any other vertex that we want. Every symmetry of X
must send vertices to vertices. The cube has 8 vertices, so |orbG(x)| = 8.
Suppose that T is a symmetry of the square which doesn’t move x. There
are three edges coming into x and T must permute those in some way. It
is not hard to see that all possibilities for permutations can be achieved.
Furthermore, if T fixes x and all edges coming into x then T must be I. To
see this, recall that if a symmetry of 3–space fixes three points then it is the
identity.

Thus,
|stabG(x)|= |S3|= 6.

Hence, by the orbit-stabilizer theorem, G has 8 ·6 = 48 elements.

The five platonic solids are the tetrahedron, the cube, the octahedron, the
dodecahedron, and the iscosahedron.

Exercise 17. Look up pictures of each of the platonic solids and perform an
analysis similar to what we just did to determine the orders of their groups
of symmetries.

Some of the symmetries that we counted include reflections. Let Sym+(X)
denote the subgroup of Sym+(X) which preserve the orientation of 3–space.
Let [g] and [h] be cosets of this group in Sym(X) where both g and h reverse
orientation. Notice that g−1 reverses orientation. Notice also that, k =
g−1◦h must preserve orientation; that is, g◦h is in Sym+(X). The symmetry
k−1 also preserves orientation. Thus,

h◦ k−1 is in [h].

But
h◦ k−1 = h◦ (g−1 ◦h)−1 = h◦h−1 ◦g = g.

Hence, [g] = [h]. This proves that there are at most two cosets of Sym+(X)
in Sym(X): Sym+(X) and one other one [g]. Thus, the index of Sym+(X) is
either one or two in Sym+(X). We can conclude, for example, that there are
24 orientation preserving symmetries of the cube. Figure 4 depicts three
representative examples.
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180◦

90◦

120◦

FIGURE 4. Examples of the three types of orientation pre-
serving symmetries of the cube.


