Exam 1 Review

MA 111 Spring 2009

The exam will be in-class on Friday, March 13

- Why do mirrors reflect left/right but not up/down?
- What is the Ozma problem and how can it be solved?
- What is an enantiomorph? What are some examples from nature?
- What does it mean to say that parity is not conserved in weak interactions?
- What some examples of groups of symmetries?
- Give an example of a planar shape that has non-trivial rotational symmetry
- Define the following terms or notation:

group	monster group
D_{n}	subgroup
\mathbb{S}_{n}	coset
A_{n}	orbit of a point
C_{n}	stabilizer of a point
baid group	

- Is $\overline{\mathbb{R}}$ (the real numbers) with addition a group? Is \mathbb{R} with subtraction a group?
- Suppose that G is a finite group and that g is in G. Explain why there is a k so that $g^{k}=\mathbf{I}$.
- Carefully explain why D_{n} can be generated by a rotation and a reflection.
- Carefully explain why D_{n} can be generated by two reflections.
- Given the fact that \mathbb{S}_{3} can be generated by transpositions, carefully explain why \mathbb{S}_{4} can be generated by transpositions.
- Given the fact that \mathbb{S}_{4} can be generated by transpositions, carefully explain why \mathbb{S}_{5} can be generated by transpositions.
- State LaGrange's Theorem and explain, in detail, why it is true.
- State the orbit-stabilizer theorem and explain, in detail why it is true.
- Use the orbit-stabilizer theorem to determine an upper bound on the number of symmetries of a cube, tetrahedron, octahedron, icosahedron, and dodecahedron.
- Use LaGrange's theorem to show that if a group contains a prime number of symmetries then the only subgroups are $\{\mathbf{I}\}$ and the whole group. Use this to show that any symmetry other than I will generate the group.
- Write down all the elements of the following group without repetition

$$
\left\langle S, T \quad \mid \quad S \circ T=T \circ S, \quad S^{2}=\mathbf{I}, \quad T^{3}=\mathbf{I}\right\rangle
$$

- Be able to do calculations in \mathbb{S}_{n} and D_{n}.
- Be able to use LaGrange's theorem to calculate the number of cosets of a given subgroup in a given group. For example, how many cosets of $\left\{\mathbf{I}, R_{180}\right\}$ in D_{4} are there?
- Be able to write down all the cosets of a given subgroup in a given group. For example, write down all the cosets of $\left\{\mathbf{I}, R_{180}\right\}$ in D_{4}.

