
Fall 2022/MA 314 Introduction to Metric Spaces

Geometry, both classical and modern, is about finding ways to mathematically investigate space. One of the
primary tools for doing this is the theory of metric spaces. These notes are intended to help you learn the
parts of metric space theory which will be useful for us in the rest of the semester. As always in mathematics,
the best way to learn something is to try to solve a variety of problems, so there are a list of results for you
to prove. You are encouraged to work with your classmates on these, but your write-ups must be your own.
If you find yourself in the position of having to just listen to someone else explain something - or explaining
something to someone else - you should find a different partner to work with. It is crucial you do your own
thinking.

See the homework page for specific assignments, you may not be required to do all these problems.

1. METRIC SPACES

At its heart, a metric space is a set (whose elements are called points) together with a way of measuring
distance (called a metric) between the elements.

Definition. A set X and a function d : X ×X → [0,∞) is called a metric space if the following hold for all
x,y,z ∈ X :

(M1) d(x,x) = 0 (the distance from a point to itself is zero)

(M2) If d(x,y) = 0 then x = y (the only point y of distance 0 from x is x itself)

(M3) d(x,y) = d(y,x) (the distance from x to y is the same as the distance from y to x)

(M4) d(x,z)≤ d(x,y)+d(y,z) (the triangle inequality: taking a detour from x to z by going through y can
only increase distance)

If X and d satisfy (M1), (M3), and (M4) (but not necessarily (M2)) then X and d are a pseudo-metric space
and d is a pseudo-metric or semi-metric. We often call the pair (X ,d) a metric space, to emphasize the
dependence on both the set and the distance function.

Here is the simplest example of a metric. Prove that it is one.

Exercise 1.1. Let X be any set and define d : X×X → [0,∞) by

d(x,y) =

{
0 x = y
1 x 6= y.

The function d is called the discrete metric on X .

The usual distance function (called the euclidean metric) on Rn is the most important of all metrics. It is
easiest to define and work with if we use some linear algebra. If you don’t remember much about the dot
product, now would be a good time to go review it. Other than as a good review of the properties of the dot
product, the proof isn’t that important for us (though the theorem is!) There are shorter proofs - perhaps you
can find one! Recall that the norm or magnitude of a vector x = (x1, . . . ,xn) ∈ Rn is

||x||=
√

x · x =
(
x2

1 + · · ·+ x2
n
)1/2

.

If n = 1, we usually write |x| instead of ||x||.
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Theorem 1.2. The euclidean metric d on Rn, defined by

d(x,y) = ||x− y||
for all x = (x1, . . . ,xn) and y = (y1, . . . ,yn), is a metric.

Perhaps you can come up with your own way of proving this, but here is one.

Proof. It is easily seen from the formula for dot product that (M1) and (M3) hold. To show (M2) holds,
suppose that d(x,y) = 0. Then

d(x,y) = 0 ⇒√
(x− y) · (x− y) = 0 ⇒
(x− y) · (x− y) = 0 ⇒

(x1− y1)
2 + · · ·+(xn− yn)

2 = 0

Each term in the sum on the left is non-negative, so the sum can only be zero if each term is zero. Conse-
quently, x = y.

We now show (M4), the triangle inequality. Let x,y,z∈Rn. Define a = (x−y), b = (y−z), and c = (x−z) =
a+b. We need to show that

||a||+ ||b|| ≥ ||a+b||
This inequality holds if and only if the inequality obtained by squaring both sides holds:

a ·a+b ·b+2
√

a ·a
√

b ·b≥ (a+b) · (a+b).

The right side is equal to a ·a+b ·b+2a ·b. Thus, we desire to show
√

a ·a
√

b ·b−a ·b ≥ 0 ⇔
||a||||b||−a ·b ≥ 0.

The geometric interpretation of the dot product is that a ·b =
√

a ·a
√

b ·bcosθ where θ is the angle between
a and b. Since cosθ ∈ [−1,1] and since we wanted to show

√
a ·a
√

b ·b(1− cosθ)≥ 0

we have our desired result. �

Henceforth, if we do not specify a metric on Rn, we will assume we are using the euclidean metric.

What are some other metric spaces? One way of getting a new metric space is simply to restrict to a subset
of a given metric space. This is surprisingly important.

Prove the following theorem (it should be easy!)

Theorem 1.3. Suppose that X is a metric space with metric d and that A⊂ X. Let dA denote the restriction
of d to A×A ⊂ X ×X. Then A is a metric space with metric dA (it is called a subspace of X and dA is the
subspace metric.

Exercise 1.4. Let S1 = {x ∈R2 : ||x||= 1} be the unit circle. Give S1 the subspace metric from R2. What is
the distance from (1,0) to (0,1)? Is this equal to the distance you would travel as you go around the circle
from (1,0) to (0,1)?

The set R2 can have many different metrics. We have seen the discrete metric and the euclidean metric.
Here is another metric, called the Manhattan metric - prove it is a metric.

Definition. For (x,y),(a,b)∈R2, define d((x,y),(a,b)) = |x−a|+ |y−b|. Then d is called the Manhattan
metric on R2.
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Exercise 1.5. Prove the Manhattan metric is a metric. Why do you think it is called the Manhattan metric?
(Hint: look at a map of Manhattan and think about how far you have to travel to get between two different
points in a taxicab.)

Definition. For (x,y),(a,b) ∈ R2, define d((x,y),(a,b)) = max(|x− a|, |y− b|). Then d is called the max
metric on R2.

Exercise 1.6. Prove the max metric on R2 is a metric.

Definition. Suppose that X ⊂ R2 contains the origin 0. The Paris metric is the metric d such that if x,y,0
are all on a line then d(x,y) is the euclidean distance from x to y and otherwise

d(x,y) = deucl(x,0)+deucl(0,y)
where deucl is euclidean distance.

Exercise 1.7. Prove the Paris metric is a metric. Why do you think it is called the Paris metric?

Definition. A graph consists of a set V of vertices and a set E of edges; each edge has two endpoints which
are elements of V . A path from a vertex a to a vertex b is a sequence alternating between vertices and edges:

v0,e1,v1,e2,v2, . . . ,en,vn

such that each vi is a vertex, each ei is an edge, for i ∈ {1, . . . ,n} the endpoints of ei are vi−1 and vi, v0 = a
and vn = b. The length of the path is n (the number of edges). When it is clear (or does not matter) what
edges we are using, we will often just list the vertices in the path:

v0,v1, . . . ,vn;

and leave the edges e1, . . . ,en unnamed. A graph is connected if for all vertices a and b, there exists a path
from a to b. If we define the distance d(a,b) from a vertex a to a vertex b to be the length of the shortest
path from a to b, then d is a metric on the vertex set of the graph.

Exercise 1.8. Suppose that (Y,dY ) is a metric space and that X is a set. If f : X → Y is a function, define
dX(a,b) = dY ( f (a), f (b)). What conditions guarantee that dX is a metric? When it is a metric, it is called
the pull-back metric on X .

Although we could continue to give lots of examples of metrics on lots of different sets, our time is better
spent by continuing on.

2. LINEAR ALGEBRA REMINDER

This section contains pretty much all the linear algebra we will need. Matrix multiplication is the most
important thing to know, so be sure you take the time to understand that. The other aspects will be developed
as needed. If you haven’t seen these things before, don’t be intimidated: just go a bit more slowly and try
making up your own examples.

Recall that an n×n matrix M is an array with n numbers in each row and n in each column:

M =


a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n

...
an1 an2 an3 · · · ann


For example, here is a 3×3 matrix:

M =

0 −3 1/2
4 1 5
π −3 17
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We will refer to a row of a matrix as a row vector and a column as a column vector. We will often write
the elements of Rn as columns. For instance:

(a1,a2, . . . ,an) =


a1
a2
a3
...

an


If r =

(
a1 a2 . . . an

)
is a row and c = (b1,b2, · · · ,bn) is a column, then

rc = a1b1 +a2b2 + · · ·+anbn.

This is essentially the dot product. For example:

(
0 −2 5

) 8
19
−1

= 0(8)+(−2)(19)+5(−1) =−45.

We can multiply matrices as follows (where we label the rows of the first matrix and columns of the second):
−− r1 −−
−− r2 −−

...
−− rn −−


 | | · · · |

c1 c2 · · · cn
| | · · · |

=


r1c1 r1c2 · · · r1cn
r2c1 r2c2 · · · r2cn

...
rnc1 rnc2 · · · rncn


For example, (

2 3
4 −1

)(
8 −2
5 20

)
=

(
31 56
13 −28

)
The product of two n×n matrices is another n×n matrix. We can similarly multiply an n×n matrix times
an element of Rn. (

2 3
4 −1

)(
8
5

)
=

(
10
27

)
Matrix multiplication is associative, but not necessarily commutative.

The determinant is defined as follows for 2×2 and 3×3 matrices:

det
(

a b
c d

)
= ad−bc

det

a b c
d e f
g h i

= adet
(

e f
h i

)
−bdet

(
d f
g i

)
+ cdet

(
d e
g h

)

An n×n matrix M is orthogonal if for any two a,b ∈ Rn we have (Ma) · (Mb) = a ·b. This is equivalent to
saying that distinct columns have dot product 0 (i.e. are orthogonal) and the dot product of any column with
itself is 1. Equivalently, the product of an orthogonal matrix with its transpose is equal to the identity.

Here is an example of an orthogonal matrix:√3/2 −1/2 0
1/2

√
3/2 0

0 0 1
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A function T : Rn→ Rn is linear if for all a,b ∈ Rn and k, ` ∈ R we have:

T (ka+ `b) = kT (a)+ `T (b)

One of the basic theorems from linear algebra says that T is linear if and only if there is an n×n matrix M
such that T (x) = Mx for all x ∈ Rn. A linear transformation is defined to be orthogonal if M is orthogonal.
Orthogonal linear transformations are precisely those transformations that preserve lengths and angles.

3. ISOMETRIES

Definition. Suppose that (X ,dX) and (Y,dY ) are metric spaces. A function f : X →Y is an isometry if it is
a bijection and if, for all a,b ∈ X we have

dY ( f (a), f (b)) = dX(a,b).

Theorem 3.1. Let X = Rn (for n = 2 or n = 3). Then for each of the following functions T : X → X, T is
an isometry:

(1) translations: T (x) = x+a for some fixed a ∈ Rn and all x ∈ X.
(2) orthogonal transformations: T (x) = Ax where A is an orthogonal matrix

When n = 2, there are two special types of orthogonal transformations: coordinate plane reflections and

rotations. For a coordinate plane reflection, the matrix A =

(
−1 0
0 1

)
or A =

(
1 0
0 −1

)
. For a rotation by

angle θ counter-clockwise around the origin, A =

(
cosθ −sinθ

sinθ cosθ

)
.

When n = 3, we have similar orthogonal transformations. The corresponding matrices are−1 0 0
0 1 0
0 0 1

 ,

1 0 0
0 −1 0
0 0 1

 ,

1 0 0
0 1 0
0 0 −1


for the coordinate plane transformations andcosθ −sinθ 0

sinθ cosθ 0
0 0 1

 ,

1 0 0
0 cosθ −sinθ

0 sinθ cosθ

 ,

cosθ 0 −sinθ

0 1 0
sinθ 0 cosθ


for the coordinate plane rotations.

Exercise 3.2. Prove that if f : X → Y is an isometry, then f−1 : Y → X is also an isometry.

Recall1 that a group G is a set with an operation ◦ such that the following axioms hold:

(G1) for all a,b ∈ G, there is a unique element a◦b in G

(G2) there exists id ∈ G such that for all a ∈ G, a◦ id = id◦a = a

(G3) for all a ∈ G, there exists a−1 ∈ G such that a◦a−1 = id.

(G4) for all a,b,c ∈ G, (a◦b)◦ c = a◦ (b◦ c).

1In math classes, this means, “I hope somewhere you’ve seen this before, but if not, keep reading and try to figure it out.”
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Theorem 3.3. Let X be a metric space with metric d. Then the set ISOM(X) of isometries from X to itself
forms a group with function composition as the operation.

(Hint: You may take the associativity of function composition for granted.)

The next two theorems classify the isometries of R and R2. We will use them, and the method of proof,
repeatedly. Notice how we begin with special cases and work our way toward the general statement. The
complete proof of the first theorem is given. You should fill in the details for the proof of the second theorem.

Theorem 3.4. Let T : R→R be an isometry. Then T is either a translation or the composition of a reflection
and a translation.

Proof. Case 1: T (0) = 0 and T (1) = 1.

We claim that T is the identity (which is a translation by 0). Let x ∈ R. Since

|x|= d(x,0) = d(T (x),T (0)) = d(T (x),0) = |T (x)|,
we have x =±T (x). If x =−T (x) and x 6= 0 for some x, then

|x−1|= d(x,1) = d(T (x),T (1)) = d(T (x),1) = |T (x)−1|= |− x−1|= |1+ x|
Thus,

x2−2x+1 = x2 +2x+1
and so x = 0, contrary to our assumption. Thus, T (x) = x for all x ∈ R.

Case 2: T (0) = 0.

We claim that either T is the identity or T is the reflection R defined by R(x) =−x for all x ∈ R.

Observe that
1 = d(1,0) = d(T (1),T (0)) = d(T (1),0) = |T (1)|

Thus, T (1) =±1. If T (1) = 1, then by the previous case, we are done. If T (1) =−1, then R◦T (0) = 0 and
R◦T (1) = 1. Thus, by Case 1, R◦T = id. The reflection R is its own inverse and so applying it both sides
of the equation we get T = R.

General Case: Assume only that T : R→ R is an isometry.

Let a = T (0) and let τ : R→ R be the translation τ(x) = x− a. Observe that τ−1(y) = y+ a for all y ∈ R
and, therefore, τ−1 is also a translation. Also, τ ◦T (0) = 0. Thus, by Case 2, τ ◦T is either the identity,
in which case T = τ−1, or is a reflection in which case T is the composition of the translation τ−1 with the
reflection. �

Theorem 3.5. Let T : R2→ R2 be an isometry. Then T is the composition of translations, reflections, and
rotations.

Proof. Let e1 = (1,0) and e2 = (0,1) be the standard basis vectors for R2. Let 0 denote the vector (0,0).

Case 1: T (0) = 0, T (e1) = e1 and T (e2) = e2.

〈 Prove that T is the identity 〉

Case 2: T (0) = 0 and T (e1) = e1, but T (e2) is not necessarily e2.

〈 Prove that T is either the reflection R(x,y) =
(

1 0
0 −1

)
(x,y) or the identity. 〉

Case 3: T (0) = 0 but T does not necessarily fix either e1 or e2.
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〈 Prove that T is either a rotation or the composition of a rotation and the reflection R 〉

General Case: T is any isometry of R2.

〈 Prove that T is the composition of rotations, reflections, and translations (not necessarily using all of
them). 〉

�

Here’s a result which shouldn’t be too hard to prove. We’ll use it later in the course.

Exercise 3.6. Let X be a metric space. Let H ⊂ ISOM(H) be a subgroup. Define a relation ∼ on X by x∼ y
if and only if there exists g ∈ H such that g(x) = y. Prove that ∼ is an equivalence relation on X .

The equivalence class of a point x ∈ X under the equivalence relation in the previous exercise is called the
orbit of x under H. We’ll usually denote it by x. The quotient set X is the set of equivalence classes. We’ll
make us of a slightly generalized version of the next theorem as well.

Theorem 3.7. Suppose that (X ,d) is a metric space and that H ⊂ ISOM(X) is a subgroup of the isometry
group. Assume that for all x ∈ X, the orbit x is finite (i.e. only has only finitely many elements.) Define d on
X by

d(x,y) = min{d(x′,y′) : x′ ∈ x,y′ ∈ y}.
Then d is a metric on X.

(Hint: You will have to use that every element of H is an isometry of X and that the equivalence classes
partition X .)

4. PATHS

In a previous example, we saw how using the subspace metric on the circle S1 the distance from (1,0) to
(−1,0) is 2, but if we were forced to stay on the circle we’d have to travel a distance of π . In this section,
we make this precise by talking about path metrics. Later on we will generalize some of this discussion to
other metric spaces. We will make use of basic multi-variable calculus, we take a moment to review some
of it. For more, see Colley’s Vector Calculus text. Mostly we’ll be working in 2- and 3-dimensions but some
of this works in all dimensions, so whenever there’s no extra cost we’ll phrase things for Rn for any n≥ 1.

Recall that if [a,b] ⊂ R is an interval and if γ : [a,b]→ Rn is a function, then for every t ∈ [a,b], γ(t) =
(x1(t),x2(t), . . . ,xn(t)) is an element of Rn. The function γ is continuous if every coordinate functions
xi : [a,b]→Rn is continuous. We say that γ is of class C1 if each coordinate function xi is differentiable and
has continuous derivative ẋi. If γ is C1, then the derivative of γ is γ̇(t) = (ẋ1(t), ẋ2(t), . . . , ẋn(t)) for all t.

Suppose that F : Rn→Rm is a differentiable function. We may write F(x) = ( f1(x), f2(x), · · · , fm(x))∈Rm.
Its derivative DF at the point a ∈ Rn is the linear function given by

x 7→ DF |ax.

Where DF |a is the m×n matrix

DF |a =


∂ f1
∂x1

(a) ∂ f1
∂x2

(a) . . . ∂ f1
∂xn

(a)
∂ f2
∂x2

(a) ∂ f1
∂x2

(a) . . . ∂ f2
∂xn

(a)
...

...
. . .

...
∂ fm
∂x2

(a) ∂ fm
∂x2

(a) . . . ∂ fm
∂xn

(a)

 .
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The chain rule says that if F : Rn → Rm and G : Rm → Rp are differentiable functions, then the function
G◦F is differentiable and has matrix

D(G◦F)|a = DG|F(a)DF |a

We now apply these facts to paths.

Definition. For U ⊂ Rn, a path in U is a continuous function γ : [a,b]→U where a < b are real numbers.
We say that γ is a path from γ(a) to γ(b). We will usually (but not always) take a = 0 and b = 1. The
derivative of γ is the function γ̇ . The path γ is smooth if it is C1 and ·γ(t) 6= 0 for all t. A piecewise smooth
path in U ⊂ Rn is a continuous function γ : [a,b]→U such that there exist t0, . . . , tn ∈ [a,b] such that

a = t0 < t1 < · · ·< tn−1 < tn = b

so that the restriction of γ to each interval [ti, ti+1] is smooth.

Note: Bonahon (p. 2) works with “piecewise differentiable” curves, but he should really work with “piece-
wise smooth” curves.

Exercise 4.1. Draw a picture of a smooth path in R2 and a path in R2 which is piecewise smooth, but not
smooth.

Exercise 4.2. Give an example of a path γ : [−1,1]→R such that the image of γ is [0,1] but γ is not smooth.

Definition. Suppose that γ : [a,b]→ R2 is a piecewise smooth path. Then the (euclidean) length of γ is

L(γ) =
∫ b

a
||γ̇(t)||dt =

∫ b

a

√
ẋ2(t)+ ẏ2(t)dt.

We will often let ds = ||γ̇||dt and so L(γ) =
∫ b

a ds.

Since ||γ̇|| is the speed of γ , we obtain length by integrating speed.

Exercise 4.3. Write down a formula for an example of a smooth path in R2 and write down a formula
(perhaps a piecewise formula) for an example of a piecewise smooth, but not smooth, path in R2. Find
the derivatives of the smooth and piecewise smooth paths. If you can, find their lengths; otherwise use
SageMath, Mathematica or WolframAlpha to find an approximation to their lengths. (Ask for help on how
to do this if you want.)

Exercise 4.4. The line segment in R2 between points (x0,y0) and (x1,y1) can be parameterized as

γ(t) = (1− t)
(

x0
y0

)
+ t
(

x1
y1

)
for t ∈ [0,1]. Calculate L(γ) and show it is equal to the euclidean distance from (x0,y0) to (x1,y1).

In fact, as you probably already know, a straight line segment is the shortest path between two points. You
will be asked to prove in a bit. First we show that isometries of R2 preserve the length of curves. We will be
constructing variations of these arguments for different geometries down the road.

Theorem 4.5. Suppose that T : R2 → R2 is an isometry and that γ : [a,b]→ R2 is a piece-wise smooth
path. Then

L(γ) = L(T ◦ γ).

(Hint: Use the classification of isometries of R2 and the matrix form of the chain rule from multi-variable
calculus. If you haven’t seen this try looking it up in Colley’s vector calculus textbook.)
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Theorem 4.6. Suppose that a = (x0,y0) and b = (x1,y1) are points in R2 and that γ is a smooth path from
a to b. Prove that L(γ)≥ d(a,b) with equality only if the range of γ is a line segment.

Proof. Case 1: x0 = x1 and γ is smooth.

Let γ(t) = (x(t),y(t)) for all t ∈ [a,b]. We have

L(γ) =
∫ b

a

√
ẋ2(t)+ ẏ2(t)dt.

〈 Explain why

L(γ)
(∗)
≥
∫ b

a
|ẏ|dt ≥ y(b)− y(a) = y1− y0 = d(a,b).

〉

If the range of γ is not a line segment, then x : [a,b]→ R2 is non-constant and ẋ is not the zero function.

〈 Show in this case that the inequality (*) is strict 〉

The general case: γ is smooth.

〈 Prove the theorem in this case by using an isometry to convert it to Case 1. 〉

�

Challenge! Prove the previous theorem for the case when γ is only piecewise-smooth.

The next task will be to show how, whenever, we can measure the length of a path we can create a corre-
sponding pseudo-metric. Sometimes the pseudo-metric will actually be a metric!
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