Fall 2022/MA 314Study Guide for Exam 2

This is an optional exam. If you decide to take it, you need to schedule 50 minutes during the week of November 7 to take the exam at Scott's office. If you received a grade of X/100 on Exam 1 and a grade of Y/100 on Exam 2. Your Exam 1 grade will be revised to be (X + (Y/100) * (100 - X))/100.

The exam will consist of a selection of the following, perhaps phrased in slightly different ways.

- (1) Know precise definitions of the following terms:
 - (a) Metric space (X, d)
 - (b) Discrete, Euclidean, Manhattan, Paris, Max, Spherical, Hyperbolic metrics
 - (c) Isometry $f: X \to Y$ between metric spaces
 - (d) Open ball and open set in a metric space
 - (e) Continuous function $f: X \to Y$ between metric spaces
 - (f) Topologically continuous function $f: X \to Y$ between metric spaces
 - (g) The limit (x_n) of a sequence in a metric space, and what it means for a sequence to converge.
 - (h) Sequentially continuous function $f: X \to Y$ between metric spaces
 - (i) Homeomorphism $f: X \to Y$ between metric spaces
 - (j) Compact metric space
 - (k) The length of a sequence in a metric space
 - (l) Complete metric space
 - (m) Surface
 - (n) Linear and Anti-linear fractional transform
 - (o) Grasshopper metric
 - (p) "Locally isometric"
- (2) Be able to prove the following:
 - (a) A function $f: X \to Y$ between metric spaces is continuous iff it is topologically continuous iff it is sequentially continuous.
 - (b) If $f: X \to Y$ is a surjective continuous function and X is compact, then Y is compact
 - (c) If $f: X \to Y$ and $g: Y \to Z$ are continuous, then so is $g \circ f: X \to Z$
 - (d) If a finite length sequence in a metric space X has a convergent subsequence, then it also converges.
 - (e) If *X* is a compact metric space, then it is complete.
 - (f) Suppose that $U \subset \mathbb{E}^n$ has the property that there is a piecewise differentiable path in U between any two points of U. Define the path metric on U and prove that it is a metric.
 - (g) Prove that every isometry of \mathbb{E}^2 is the composition of translations, reflections, and rotations. If there are lemmas you need along the way, be able to state and prove them too.
 - (h) Prove that if τ and τ' are reflections of \mathbb{E}^2 about lines through the origin, then $\tau \circ \tau'$ is a rotation of \mathbb{E}^2 about the origin.

- (i) Prove that every geodesic in \mathbb{E}^2 is a line segment.
- (j) Prove that if ρ and ρ' are rotations of \mathbb{E}^3 around lines through the origin, then so is $\rho' \circ \rho$.
- (k) Prove that horizontal translations, homotheties, and the standard inversion are all isometries of \mathbb{H}^2 .
- (1) Prove that every geodesic in \mathbb{H}^2 is either a vertical line segment or a portion of a circle centered on the *x*-axis in \mathbb{E}^2 .
- (m) Prove that if $a, b \in \mathbb{R} \cup \{\infty\}$ are distinct then there exists a hyperbolic isometry ϕ taking the complete geodesic with ends at *a* and *b* to the complete geodesic with ends at 0 and ∞ (i.e. the positive imaginary axis.)
- (n) Prove that if X is a Euclidean polygon and that \sim is an equivalence relation induced by gluing pairs of edges via isometries with quotient space \overline{X} , then the gluing is proper and for every $\overline{P} \in \overline{X}$ there exists r > 0 such that $B_r(\overline{P}) = \bigcup B(x, r)$.

$$x \in \overline{P}$$