Fall 2022/MA 314

(1) Know precise definitions of the following terms:
(a) Metric space (X, d)
(b) Discrete, Euclidean, Manhattan, Paris, Max, Spherical, Hyperbolic metrics
(c) Isometry $f: X \rightarrow Y$ between metric spaces
(d) Open ball and open set in a metric space
(e) Continuous function $f: X \rightarrow Y$ between metric spaces
(f) Topologically continuous function $f: X \rightarrow Y$ between metric spaces
(g) The limit $\left(x_{n}\right)$ of a sequence in a metric space, and what it means for a sequence to converge.
(h) Sequentially continuous function $f: X \rightarrow Y$ between metric spaces
(i) Homeomorphism $f: X \rightarrow Y$ between metric spaces
(j) Compact metric space
(k) The length of a sequence in a metric space
(1) Complete metric space
(m) Surface
(n) Linear and Anti-linear fractional transform
(2) Be able to prove the following:
(a) A function $f: X \rightarrow Y$ between metric spaces is continuous iff it is topologically continuous iff it is sequentially continuous.
(b) If $f: X \rightarrow Y$ is a surjective continuous function and X is compact, then Y is compact
(c) If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are continuous, then so is $g \circ f: X \rightarrow Z$
(d) If a finite length sequence in a metric space X has a convergent subsequence, then it also converges.
(e) If X is a compact metric space, then it is complete.
(f) Suppose that $U \subset \mathbb{E}^{n}$ has the property that there is a piecewise differentiable path in U between any two points of U. Define the path metric on U and prove that it is a metric.
(g) Prove that every isometry of \mathbb{E}^{2} is the composition of translations, reflections, and rotations. If there are lemmas you need along the way, be able to state and prove them too.
(h) Prove that if τ and τ^{\prime} are reflections of \mathbb{E}^{2} about lines through the origin, then $\tau \circ \tau^{\prime}$ is a rotation of \mathbb{E}^{2} about the origin.
(i) Prove that every geodesic in \mathbb{E}^{2} is a line segment.
(j) Prove that if ρ and ρ^{\prime} are rotations of \mathbb{E}^{3} around lines through the origin, then so is $\rho^{\prime} \circ \rho$.
(k) Prove that horizontal translations, homotheties, and the standard inversion are all isometries of \mathbb{H}^{2}.
(1) Prove that every geodesic in \mathbb{H}^{2} is either a vertical line segment or a portion of a circle centered on the x-axis in \mathbb{E}^{2}.

