MA 274: Exam 2 Study Guide Partial Solutions

(1) The following are examples of equivalence relations:

- \equiv_{p} on \mathbb{Z}, where $x \equiv_{p} y$ iff $x-y$ is a multiple of p.

Proof. We show that \equiv_{p} is reflexive, symmetric, and transitive. Suppose that $n \in \mathbb{Z}$. Then

$$
n-n=0=0 \cdot p
$$

so $n \equiv_{p} n$. Thus, \equiv_{p} is reflexive.
Suppose that $n, m \in \mathbb{Z}$. We prove that if $n \equiv_{p} m$ then $m \equiv_{p} n$. Assume $n \equiv_{p} m$. By the definition of \equiv_{p}, there exists $k \in \mathbb{Z}$ such that

$$
n-m=k p .
$$

Thus, by algebra,

$$
m-n=(-k) p
$$

Since $-k \in \mathbb{Z}, m \equiv_{p} n$. Thus, \equiv_{p} is symmetric.
Suppose that $n, m, \ell \in \mathbb{Z}$. We prove that if $n \equiv_{p} m$ and $m \equiv_{p} \ell$, then $n \equiv_{p} \ell$. Assume $n \equiv_{p} m$ and $m \equiv{ }_{p} \ell$. By the definition of \equiv_{p}, there exists, $x, y \in \mathbb{Z}$ such that

$$
\begin{aligned}
n-m & =x p \text { and } \\
m-\ell & =y p
\end{aligned}
$$

Adding our two equations we obtain

$$
n-\ell=(x+y) p .
$$

Since $x+y \in \mathbb{Z}$, we have $n \equiv_{p} \ell$ and so \equiv_{p} is transitive.

- \sim on $\mathbb{Z} \times \mathbb{N}$ where $(a, b) \sim(c, d)$ iff $a d=b c$.

Proof. We prove \sim is reflexive, symmetric, and transitive. Let $(a, b) \in \mathbb{Z} \times \mathbb{N}$. Then since $a b=b a,(a, b) \sim(a, b)$ so \sim is transitive. Suppose that $(a, b) \sim(c, d)$. Then by definition of \sim, $a d=b c$. By the properties of multiplication, $c b=d a$, so $(c, d) \sim(a, b)$. Thus, \sim is symmetric. Finally, assume that $(a, b) \sim(c, d)$ and $(c, d) \sim(e, f)$. By definition of $\sim, a d=b c$ and $c f=e d$. Multiplying the first equation by f produes:

$$
a d f=b c f .
$$

Use the second equation to subsititue $c f=e d$:

$$
a d f=b e d .
$$

Since $d \neq 0$, we can divide both sides by d to find $a f=b e$. Thus, $(a, b) \sim(e, f)$. Thus, \sim is transitive.

- \sim on the vertex set of a graph G, where $x \sim y$ iff there is a path from x to y in the graph.

Proof. We prove \sim is reflexive, symmetric, and transitive. Suppose that x is a vertex of G. Then (x) is a finite sequence whose initial term is x and whose final term is x and with the (vacuous) property that each pair of adjacent vertices in the sequence are the endpoints of an edge in G. Thus, (x) is a path from x to x and so \sim is reflexive.

Suppose that x and y are vertices of G such that $x \sim y$. We show $y \sim x$. By definition of \sim, there is a path

$$
x_{0}, x_{1}, \ldots, x_{n}
$$

from $x=x_{0}$ to $y=x_{n}$. By definition of path each pair x_{i}, x_{i+1} of adjacent vertices are the endpoints of an edge in G. For each $i \in\{0, \ldots, n\}$, let $y_{i}=x_{n-i}$. Then

$$
y_{0}, y_{1}, \ldots, y_{n}
$$

is the sequence x_{0}, \ldots, x_{n} in reverse order. Thus, $y_{0}=x_{n}=y$ and $y_{n}=x_{0}=x$. Also, if y_{i} and y_{i+1} are adjacent vertices, then they equal x_{n-i-1} and x_{n-i} respectively and so are adjacent vertices in the path from x to y. Consequently, they are the endpoints of an edge in G. Thus, y_{i} and y_{i+1} are endpoints of an edge in G. Thus, we have a path from y to x. Consequently, $y \sim x$.

Now suppose that x, y, z are vertices of G and that $x \sim y$ and $y \sim z$. We show $x \sim z$. By definition of \sim, there is a path

$$
x_{0}, x_{1}, \ldots, x_{n}
$$

from x to y and also a path

$$
y_{0}, \ldots, y_{m}
$$

from y to z. Notice that $x_{n}=y=y_{0}$. We claim that the sequence

$$
x_{0}, x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}
$$

is a path from x to z. Recall that $x_{0}=x$ and $y_{m}=z$. Any pair of adjacent vertices in the sequence is either x_{i}, x_{i+1} for $i \in\{0, \ldots, n-1\}$ or y_{i}, y_{i+1} for $i \in\{1, \ldots, m-1\}$ or x_{n}, y_{1}. In the first two cases, the adjacent vertices are endpoints of edges since they were in the paths from x to y and from y to z. In the third case we have $x_{n}=y_{0}$ so x_{n} and y_{1} are also the endpoints of an edge in G. Consequently, there is a path from x to z. Thus, $x \sim z$ by definition of \sim and so \sim is transitive.

- Suppose that P is a partition of a non-empty set X. Define \sim on X by $x \sim y$ iff there exists $A \in P$ such that x, y are both elements of A.

Proof. We prove that \sim is reflexive, symmetric and transitive. Let $x \in X$. By the covering property of partitions, there exists $A \in P$ such that $x \in A$. Thus, there exists $A \in P$ such that $x \in A$ and $x \in A$. Consequently, $x \sim x$. Thus, \sim is reflexive.

Now suppose that $x, y \in X$ and that $x \sim y$. By definition of \sim, there exists $A \in P$ such that $x \in A$ and $y \in A$. By the definition of conjunction, $y \in A$ and $x \in A$. Thus, $y \sim x$. Thus, \sim is symmetric.

Assume that $x, y, z \in X$, that $x \sim y$ and that $y \sim x$. Thus, there exists $A \in P$ and $B \in P$ so that $x, y \in A$ and $y, z \in B$ by definition of \sim. Observe that $y \in A \cap B$. Since $A \cap B \neq \varnothing$ we must have $A=B$ by the pairwise disjoint condition for partitions. Thus, $x, z \in B=A$. Therefore, $x \sim z$. So \sim is transitive.
(2) Suppose that \sim is an equivalence relation on a non-empty set X. For each $x \in X$, let $[x]$ be the equivalence class of x. Then the following hold:
(a) For all $x \in X, x \in[x]$.
(b) For all $x, y \in X, x \sim y$ iff $[x]=[y]$.
(c) For all $x, y \in X,[x] \cap[y] \neq \varnothing$ implies $[x]=[y]$.

Proof. Assume that \sim is an equivalence relation. Recall that $[x]=\{y \in X: x \sim y\}$. Since \sim is reflexive, $x \sim x$. Thus, $x \in[x]$.
Suppose that $x \sim y$. We show that $[x] \subset[y]$. Let $z \in[x]$. Thus, $x \sim z$ by definition of equivalence class. Since \sim is symmetric, $y \sim x$. Since \sim is transitive, $y \sim z$. Thus, $z \in[y]$. Since z was arbitrary, $[x] \subset[y]$. The same proof applied to the expression $y \sim x$ (since \sim is symmetric) shows that $[y] \subset[x]$. Thus, $[x]=[y]$. Thus, if $x \sim y$, then $[x]=[y]$.
Now suppose that $[x]=[y]$. By the first, part $y \in[y]$. By the definition of set equality, $y \in[x]$. By definition of equivalence class, $x \sim y$. Thus, $[x]=[y]$ implies $x \sim y$.

Finally, suppose that $x, y \in X$ and that $[x] \cap[y] \neq \varnothing$. We show $[x]=[y]$. Since $[x] \cap[y] \neq \varnothing$, there exists $z \in[x] \cap[y]$. By definition of intersection $z \in[x]$ and $z \in[y]$. By definition of equivalence class, $x \sim z$ and $y \sim z$. By the second part, $[x]=[z]$ and $[y]=[z]$. Thus, $[x]=[y]$.
(3) If \sim is an equivalence relation on a non-empty set X, then the set of equivalence classes is a partition of X.

Proof. From the theorem above, for every $x \in X, x \in[x]$ so X / \sim satisfies the covering property. If $A \in X / \sim$ then by definition, there exists $x \in X$ such that $A=[x]$. Since $x \in[x]$, no element of X / \sim is empty. If $A, B \in X / \sim$ and $A \cap B \neq \varnothing$, then $A=B$ by the final conclusion of the previous theorem.
(4) If $f: \mathbb{Z} / \equiv_{p} \rightarrow \mathbb{Z} / \equiv_{p}$ is defined by $f([x])=[2 x]$ then f is well-defined.

Proof. Suppose that $[x]=[y]$. By the Fundamental Properties of Equivalence Relations, $x \equiv p y$. By the definition of \equiv_{p}, there exists $k \in \mathbb{Z}$ such that $x=y+p k$. Then

$$
2 x=2 y+p(2 k)
$$

Since $2 k \in \mathbb{Z}, 2 x \equiv_{p} 2 y$. By the Fundamental Properties of Equivalence Relations, $[2 x]=[2 y]$. Thus, $f([x])=f([y])$ and f is well-defined.
(5) Addition and multiplication in $\mathbb{Z} / \equiv p$ are well-defined.

Proof. We just prove that multiplication is well-defined. Suppose that $[x]=\left[x^{\prime}\right]$ and $[y]=\left[y^{\prime}\right]$. We need to show that $[x][y]=\left[x^{\prime}\right]\left[y^{\prime}\right]$.
Since $[x]=\left[x^{\prime}\right]$ by the Fundamental Properties of Equivalence Relations, $x \equiv_{p} x^{\prime}$. Likewise, $y \equiv_{p} y^{\prime}$. By definition of \equiv_{p}, there exists $k, \ell \in \mathbb{Z}$ so that

$$
\begin{aligned}
& x=x^{\prime}+p k \\
& y=y^{\prime}+p \ell
\end{aligned}
$$

Multiplying we get:

$$
x y=x^{\prime} y^{\prime}+p\left(\ell x^{\prime}+k y^{\prime}+p k \ell\right)
$$

Thus, $x y \equiv{ }_{p} x^{\prime} y^{\prime}$ and so $[x][y]=[x y]=\left[x^{\prime} y^{\prime}\right]=\left[x^{\prime}\right]\left[y^{\prime}\right]$ as desired.
(6) The compositions of injections/surjections/bijections is a an injection/surjection/bijection.

Proof. Suppose that $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are functions.
Claim 1: If f and g are both injections, so is $g \circ f$.
Let $a, b \in X$ and assume that $g \circ f(a)=g \circ f(b)$. That is, $g(f(a))=g(f(b))$. Since g is injective, $f(a)=f(b)$. Since f is injective, $a=b$. Thus, $g \circ f$ is also injective.
Claim 2: If f and g are both surjections, so is $g \circ f$.
Let $z \in Z$. Since g is surjective, there exists $y \in Y$ such that $g(y)=z$. Since f is surjective there exists $x \in X$ so that $f(x)=y$. Then

$$
g \circ f(x)=g(f(x))=g(y)=z .
$$

Thus, $g \circ f$ is surjective.
Claim 3: If f and g are bijections, so is $g \circ f$.
This follows immediately from Claims 1 and 2 and the definition of bijection.
(7) A function $f: X \rightarrow Y$ is a bijection if and only if there is a function $f^{-1}: Y \rightarrow X$ such that $f \circ$ $f^{-1}(y)=y$ for all $y \in Y$ and $f^{-1} \circ f(x)=x$ for all $x \in X$.

Proof. Suppose, first, that $f: X \rightarrow Y$ is a bijection. Define $g: Y \rightarrow X$ as follows. If $f(x)=y$, let $g(y)=x$. We claim g is a function. Since f is surjective, for every $y \in Y$, there exists $x \in X$ with $f(x)=y$. Thus, g satisfies the domain condition. Suppose $y_{1}=y_{2}$ and that $f\left(x_{1}\right)=y_{1}$ and $f\left(x_{2}\right)=y_{2}$. Then $f\left(x_{1}\right)=f\left(x_{2}\right)$, so since f is injective $x_{1}=x_{2}$. Thus, $g\left(y_{1}\right)=x_{1}=x_{2}=g\left(y_{2}\right)$, so g satisfies the well-defined condition. We now claim that g is the inverse of f. Let $x \in X$ and let $y=f(x)$. Then $g \circ f(x)=g(f(x))=g(y)=x$. The first equality is the definition of composition, the second is the definition of y, and the third is the definition of g. Similarly, suppose that $y \in Y$ and let $x=g(y)$. Then $f \circ g(y)=f(g(y))=f(x)=y$, with the last equation coming from the definition of g and x.

Finally note that $g \circ f: X \rightarrow X$ by the definition of function composition, so it has the same domain and codomain as the identity function on X. Since it takes the same value on each element of X as does the identity function, it is equal to the identity function. Likewise $f \circ g: Y \rightarrow Y$ is equal to the identity function on Y.
Thus, g is the inverse function to f; traditionally denoted f^{-1}.
(8) The set of bijections from a set X to itself is a group, with function composition as the operation.

Proof. Let G be the set of bijections from X to itself with function composition as the operation. We just proved above that if f and g are bijections, so is $g \circ f$. Thus, G satisfies (G1). Set $\nVdash=\mathrm{id}_{X}$. Observe it is a bijection since it is it's own inverse function. If $f: X \rightarrow Y$ is a bijection, then

$$
f: \nVdash(x)=f: \operatorname{id}_{X}(x)=f\left(\operatorname{id}_{X}(x)\right)=f(x)
$$

and

$$
\nVdash: f(x)=\operatorname{id}_{X}: f(x)=\operatorname{id}_{X}(f(x))=f(x)
$$

for all $x \in X$, by definition of id_{X} and function composition. Thus, the functions f and $f \circ \nVdash$ and $\nVdash \circ f$ are all equal. Thus, \nVdash is a group identity element for G.

We proved above that if $f \in G$, then f has an inverse function f^{-1}. Since $f=\left(f^{-1}\right)^{-1}, f^{-1}$ has an inverse and is also a bijection. Hence, $f^{-1} \in G$. Also, by definition, $f: f^{-1}=\mathrm{id}_{X}=f^{-1}: f$ and so since $\nVdash=\mathrm{id}_{X}$, we have that f^{-1} is the group inverse for f.
Finally, it was proved in class that function composition is associative. Thus G is a group.
(9) The function $f: \mathbb{Z} / \equiv_{10} \rightarrow \mathbb{Z} / \equiv_{10}$ defined by $f([x])=[2 x]$ is not injective or surjective.

Proof. Observe that $f([0])=[2 \cdot 0]=[0]$ and $f([5])=[2 \cdot 5]=[10]=[0]$. Since $[0] \neq[5]$ in \mathbb{Z} / \equiv_{10}, f is not injective.

The function f is not surjective, for $[1] \notin$ range f. To see this, suppose (for a contradiction) that $f([x])=[1]$ for some $[x] \in \mathbb{Z} / \equiv_{10}$. Then

$$
[2 x]=[1] .
$$

By the fundamental properties of equivalence relations and the definition of \equiv_{10}, there exists $k \in \mathbb{Z}$ so that

$$
2 x=1+10 k .
$$

Thus,

$$
1=2(5 k-1) .
$$

But 1 is not an even integer, and so we have a contradiction.
(10) The function $f: \mathbb{Z} / \equiv_{10} \rightarrow \mathbb{Z} / \equiv_{10}$ defined by $f([x])=[3 x]$ is injective and surjective.

Proof. Suppose that $f([a])=f([b])$. By definition of f,

$$
[3 a]=[3 b] .
$$

By the fundamental properties of equivalence relations and the definition of \equiv_{10},

$$
3 a=3 b+10 k
$$

for some $k \in \mathbb{Z}$. Consequently,

$$
3(a-b-3 k)=k
$$

Set $m=(a-b-3 k)$, so $k=3 m$. Thus,

$$
3(a-b)=30 m .
$$

We see that

$$
(a-b)=10 m
$$

Thus, $a \equiv_{10} b$ and so $[a]=[b]$. Thus, f is injective.

To see that $f: \mathbb{Z} / \equiv_{10} \rightarrow \mathbb{Z} / \equiv_{10}$ is surjective, let $[y] \in \mathbb{Z} / \equiv_{10}$. We must find an $[x] \in \mathbb{Z} / \equiv_{10}$ so that

$$
[3 x]=[y] .
$$

We could do this by just computing $f([x])$ for every $[x] \in \mathbb{Z} / \equiv_{10}$ and seeing that there will be an $[x]$ such that $f([x])=[y]$ for every $[y]$. For fun, we take a slightly different approach.
Observe first that if $[a],[b] \in \mathbb{Z} / \equiv_{10}$ then

$$
f([a]+[b])=f([a+b])=[3(a+b)]=[3 a]+[3 b]=f([a])+f([b]) .
$$

Thus, if $[w],[y] \in \operatorname{range} f$, then there exist $[a],[b] \in \mathbb{Z} / \equiv_{10}$ so that $f([a])=[w]$ and $f([b])=[y]$. In which case,

$$
f([a]+[b])=f([a])+f([b])=[w]+[y],
$$

so $[w]+[y] \in \mathbb{Z} / \equiv_{10}$.
Now notice that $f([7])=[21]=[1]$. Now suppose that $[y] \in \mathbb{Z} / \equiv_{10}$. Without loss of generality, we may assume that $y \geq 0$ (otherwise replace y with $y+10|y|)$. Then

$$
[y]=\underbrace{[1]+\cdots+[1]}_{y \text { times }} .
$$

By our previous remarks, this means that

$$
[y]=f(\underbrace{[7]+\cdots+[7]}_{y \text { times }})
$$

Thus, f is surjective.
(11) Define \sim on $\mathbb{Z} \times \mathbb{N}$ by declaring $(x, y) \sim(a, b)$ if and only if $x b=y a$. Prove the following:
(a) \sim is an equivalence relation

Proof. This was done above.
(b) If we define $[(a, b)]+[(c, d)]$ to be $[(a d+b c, b d)]$ then addition on $\mathbb{Z} \times \mathbb{N} / \sim$ is well-defined.

Proof. Suppose that $[(a, b)]=\left[\left(a^{\prime}, b^{\prime}\right)\right]$ and $[(c, d)]=\left[\left(c^{\prime}, d^{\prime}\right)\right]$. We show that $[(a, b)]+[(c, d)]=$ $\left[\left(a^{\prime}, b^{\prime}\right)\right]+\left[\left(c^{\prime}, d^{\prime}\right)\right]$. By definition of equivalence class, $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$ and $(c, d)=\left(c^{\prime}, d^{\prime}\right)$. By definition of the equivalence relation:

$$
\begin{aligned}
& a b^{\prime}=a^{\prime} b \\
& c d^{\prime}=c^{\prime} d
\end{aligned}
$$

We want to show that $[(a d+b c, b d)]=\left[\left(a^{\prime} d^{\prime}+b^{\prime} c^{\prime}, b^{\prime} d^{\prime}\right)\right]$. This is equivalent to showing:

$$
(a d+b c, b d) \sim\left(a^{\prime} d^{\prime}+b^{\prime} c^{\prime}, b^{\prime} d^{\prime}\right)
$$

To show that, by the definition of \sim it suffices to show:

$$
(a d+b c) b^{\prime} d^{\prime}=\left(a^{\prime} d^{\prime}+b^{\prime} c^{\prime}\right) b d
$$

We now do that, using the two equations above.

$$
\begin{aligned}
(a d+b c) b^{\prime} d^{\prime} & =a d b^{\prime} d^{\prime}+b c b^{\prime} d^{\prime} \\
& =\left(a b^{\prime}\right) d d^{\prime}+\left(c d^{\prime}\right) b b^{\prime} \\
& =a^{\prime} b d d^{\prime}+c^{\prime} d b b^{\prime} \\
& =\left(a^{\prime} d^{\prime}+b^{\prime} c^{\prime}\right) b d
\end{aligned}
$$

which is what we want.
(c) If we define $[(a, b)] \cdot[(c, d)]$ to be $[(a c, b d)]$ then multiplication on $\mathbb{Z} \times \mathbb{N} / \sim$ is well-defined.

Proof. Suppose that $[(a, b)]=\left[\left(a^{\prime}, b^{\prime}\right)\right]$ and $[(c, d)]=\left[\left(c^{\prime}, d^{\prime}\right)\right]$. We show that $[(a, b)] \cdot[(c, d)]=$ $\left[\left(a^{\prime}, b^{\prime}\right)\right] \cdot\left[\left(c^{\prime}, d^{\prime}\right)\right]$. By definition of equivalence class, $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$ and $(c, d)=\left(c^{\prime}, d^{\prime}\right)$. By definition of the equivalence relation:

$$
\begin{aligned}
& a b^{\prime}=a^{\prime} b \\
& c d^{\prime}=c^{\prime} d
\end{aligned}
$$

Multiplying the first equation by $c d^{\prime}$:

$$
a b^{\prime} c d^{\prime}=a^{\prime} b c d^{\prime}
$$

Substitute on the right hand side using the second equation:

$$
a b^{\prime} c d^{\prime}=a^{\prime} b c^{\prime} d
$$

Thus,

$$
(a c)\left(b^{\prime} d^{\prime}\right)=(b d)\left(a^{\prime} c^{\prime}\right)
$$

By the definition of \sim :

$$
(a c, b d) \sim\left(a^{\prime} c^{\prime}, b^{\prime} d^{\prime}\right)
$$

Hence,

$$
[(a, b)] \cdot[(c, d)]=[(a c, b d)]=\left[\left(a^{\prime} c^{\prime}, b^{\prime} d^{\prime}\right)\right]=\left[\left(a^{\prime}, b^{\prime}\right)\right] \cdot\left[\left(c^{\prime}, d^{\prime}\right)\right]
$$

by the definition of multiplication.
(12) If $T: \mathbb{R} \rightarrow \mathbb{R}$ is a function such that $T(0)=0, T(1)=1$, and $|T(x)-T(y)|=|x-y|$ for all $x, y \in \mathbb{R}$, then $T=\left.\mathrm{id}\right|_{\mathbb{R}}$.

Proof. Let T be as in the hypothesis of the statement. Note that by definition the function id $\left.\right|_{\mathbb{R}}$ has \mathbb{R} as its domain and codomain, so T and $\left.\mathrm{id}\right|_{\mathbb{R}}$ have the same domain and codomain. Let $x \in \mathbb{R}$ be arbitrary. We show that $T(x)=x$. Since $\operatorname{id}_{\mathbb{R}}(x)=x$, by definition, this will show that $T=\left.\mathrm{id}\right|_{\mathbb{R}}$.
Since T is distance-preserving: $|T(x)-T(0)|=|x-0|=|x|$. Since $T(0)=0$, this means $|T(x)|=$ $|x|$. Thus, $T(x)= \pm x$. If $T(x)=x$, we are done, so suppose that $T(x)=-x$. Likewise,

$$
|-x-1|=|T(x)-1|=|T(x)-T(1)|=|x-1|
$$

Thus, $-x-1= \pm(x-1)$. If we use the minus sign on the right, then $-1=+1$, a contradiction. Thus, we must use the plus sign. That is, $-x-1=x-1$. Thus, $x=0$. Since $T(0)=0$ by assumption, we have $T(x)=x$, even in this case. Thus, $T(x)=x$, no matter what $x \in \mathbb{R}$ is.
(13) Let X be a nonempty set and let \mathscr{D} be the set of all metrics on X. For $d, d^{\prime} \in \mathscr{D}$ define $d \sim d^{\prime}$ if and only if there exists $K \geq 1$, and $C \geq 0$ such that

$$
\frac{1}{K} d(x, y)-C \leq d^{\prime}(x, y) \leq K d(x, y)+C
$$

for all $x, y \in X$. Prove that \sim is an equivalence relation.
Proof. We show that \sim is reflexive, symmetric, and transitive. For simplicity, in what follows we use function notation and write d rather than constantly writing things like $d(x, y)$ for all $x, y \in X$.

Let $d \in \mathscr{D}$. Choosing $K=1$ and $C=0$, we see that $d \sim d$.

Suppose $d, d^{\prime} \in \mathscr{D}$ and $d \sim d^{\prime}$. By definition of \sim, there exist $K \geq 1$ and $C \geq 0$ with

$$
\frac{1}{K} d-C \leq d^{\prime} \leq K d+C
$$

That is,

$$
\begin{aligned}
d^{\prime} & \leq K d+C \\
d^{\prime} & \geq \frac{1}{K} d-C
\end{aligned}
$$

Solving the two inequalities for d produces

$$
\begin{aligned}
\frac{1}{K} d^{\prime}-\frac{C}{K} & \leq d \\
K d^{\prime}+C K & \geq d
\end{aligned}
$$

Observe that $-C K \leq-\frac{C}{K}$, since $C \geq 0$ and $K \geq 1$. Thus, we also have

$$
\frac{1}{K} d^{\prime}-C K \leq d
$$

Thus,

$$
\frac{1}{K} d^{\prime}-C K \leq d \leq K d^{\prime}+C K
$$

Setting $C^{\prime}=C K$, we have shown that there exist $C^{\prime} \geq 0$ and $K \geq 1$ so that

$$
\frac{1}{K} d^{\prime}-C^{\prime} \leq d \leq K d^{\prime}+C^{\prime}
$$

Thus, $d^{\prime} \sim d$.
Now suppose that $d_{1}, d_{2}, d_{3} \in \mathscr{D}$ so that $d_{1} \sim d_{2}$ and $d_{2} \sim d_{3}$. Then by definition there exist $J, K \geq 1$ and $C, D \geq 0$ so that

$$
\begin{array}{ll}
d_{2} & \leq J d_{1}+C \\
d_{3} & \leq K d_{2}+D \\
d_{2} \geq \frac{1}{J} d_{1}-C \\
d_{3} \geq \frac{1}{K} d_{2}-D
\end{array}
$$

Substituting the first inequality into the second and the third into the fourth (using the fact that $K \geq 0$ and $d_{1} \geq 0$) we obtain:

$$
\begin{aligned}
d_{3} & \leq K J d_{1}+K C+D \\
d_{3} & \geq \frac{1}{K J} d_{2}-\frac{C}{K}-D .
\end{aligned}
$$

Let $K^{\prime}=K J$ and observe that $K^{\prime} \geq 1$ since $K, J \geq 1$. Let $C^{\prime}=K C+D$. Notice that since $K \geq 1$, we have $C^{\prime} \geq \frac{C}{K}-D$. Thus,

$$
\frac{1}{K^{\prime}} d_{1}-C^{\prime} \leq d_{3} \leq K^{\prime} d_{1}+C^{\prime}
$$

Thus, $d_{1} \sim d_{3}$, as desired. So \sim is also transitive.
(14) (CHALLENGE) Consider the equivalence relation \sim on \mathscr{D} in the previous problem. Recall that if d and d^{\prime} are metrics on X, then we can define $d+d^{\prime}$ by

$$
\left(d+d^{\prime}\right)(x, y)=d(x, y)+d^{\prime}(x, y)
$$

for all $x, y \in X$ and that $d+d^{\prime}$ is a metric on X. Define + on \mathscr{D} / \sim by

$$
[d]+\left[d^{\prime}\right]=\left[d+d^{\prime}\right]
$$

for all $d, d^{\prime} \in \mathscr{D}$. Prove that + is well-defined on \mathscr{D} / \sim.
(15) Let X be a set and let $\mathscr{F}=\{f: X \rightarrow \mathbb{R}\}$ be the set of all functions from X to \mathbb{R}. Recall that for $f, g \in \mathscr{F}$, the functions $f+g$ and $f \cdot g$ are defined by letting $(f+g)(x)=f(x)+g(x)$ and $f \cdot g(x)=f(x) g(x)$ for all $x \in X$. Define \sim on \mathscr{F} by declaring $f \sim f^{\prime}$ if and only if there exists $M \geq 0$ such that $\left|f(x)-f^{\prime}(x)\right| \leq M$ for all $x \in X$.
(a) Prove that \sim is an equivalence relation on \mathscr{F}.
(b) Define + and \cdot on \mathscr{F} / \sim by $[f]+[g]=[f+g]$ and $[f] \cdot[g]=[f \cdot g]$. Prove that + is well-defined and \cdot is not.

Proof. We show that \sim is reflexive, symmetric, and transitive. It is reflexive, because $\mid f(x)-$ $f(x) \mid=0 \leq 1$, for all $x \in X$. Thus, $f \sim f$. It is reflexive, because if $f \sim g$, then for all $x \in X$, $|f(x)-g(x)| \leq M$. Thus, $|g(x)-f(x)|=|f(x)-g(x)| \leq M$ for all $x \in X$. Thus, $g \sim f$. Suppose that $f \sim g$ and $g \sim h$. By definition of \sim, there exist $M_{1}, M_{2} \geq 0$ such that

$$
\begin{aligned}
& |f(x)-g(x)| \quad \leq \quad M_{1} \text { and } \\
& |g(x)-h(x)| \leq M_{2}
\end{aligned}
$$

for all $x \in \mathbb{R}$. Then adding our two equations:

$$
M_{1}+M_{2} \geq|f(x)-g(x)|+|g(x)-h(x)| \geq|f(x)-g(x)+g(x)-h(x)|=|f(x)-h(x)|
$$

for all $x \in \mathbb{R}$. (The second inequality comes from the triangle inequality for absolute value.) Thus, $f \sim h$ as desired.
Suppose that $[f]=\left[f^{\prime}\right]$ and $[g]=\left[g^{\prime}\right]$. We show $[f]+[g]=\left[f^{\prime}\right]+\left[g^{\prime}\right]$. Since $[f]=\left[f^{\prime}\right], f \sim f^{\prime}$. Thus, there exists $M_{1} \geq 0$ such that $\left|f(x)-f^{\prime}(x)\right| \leq M_{1}$ for every $x \in \mathbb{R}$. Similarly, there exists $M_{2} \geq 0$ such that $\left|g(x)-g^{\prime}(x)\right| \leq M_{2}$. Using the same trick as in our proof of transitivity, we add the inequalities:
$M_{1}+M_{2} \geq\left|f(x)-f^{\prime}(x)\right|+\left|g(x)-g^{\prime}(x)\right| \geq\left|f(x)-f^{\prime}(x)+g(x)-g^{\prime}(x)\right|=\left|(f(x)+g(x))-\left(f^{\prime}(x)-g^{\prime}(x)\right)\right|$ for all $x \in \mathbb{R}$. Thus, $(f+g) \sim\left(f^{\prime}+g^{\prime}\right)$. Consequently, $[f+g]=\left[f^{\prime}+g^{\prime}\right]$ and so $[f]+[g]=$ $\left[f^{\prime}\right]+\left[g^{\prime}\right]$ as in the definition of addition for equivalence classes.
To see that multiplication is not well-defined, for all $x \in \mathbb{R}$, let $f(x)=e^{x}$ and $f^{\prime}(x)=e^{x}+5$. Let $g(x)=x$ and $g^{\prime}(x)=x+3$. Note that $f \sim f^{\prime}$ and $g \sim g^{\prime}$. However, for all $x \in \mathbb{R}$:

$$
\begin{aligned}
\left|f(x) g(x)-f^{\prime}(x) g^{\prime}(x)\right| & =\left|x e^{x}-(x+3)\left(e^{x}+5\right)\right| \\
& =\left|x e^{x}-x e^{x}-3 e^{x}-5 x-15\right| \\
& =\left|3 e^{x}+5 x+15\right|
\end{aligned}
$$

Since $\lim _{x \rightarrow \infty} 3 e^{x}+5 x+15=\infty$, the difference of the products is not bounded. Thus, $f g \nsim f^{\prime} g^{\prime}$ and so multiplication is not well-defined on equivalence classes.
(16) Suppose that $f: A \rightarrow B, g: B \rightarrow C$, and $h: C \rightarrow D$ are functions. Prove

$$
h \circ(g \circ f)=(h \circ g) \circ f
$$

(17) There is a bijection from the interval $(-10,10)$ to the interval $(1,2)$.

Proof. Let $f(x)=\frac{1}{20}(x-1)+2$ for all $x \in(-10,10)$. Observe that $f:(-10,10) \rightarrow(1,2)$ is a function with inverse

$$
f^{-1}(y)=20(y-2)+1
$$

for all $y \in(1,2)$. Since f has an inverse function it is a bijection.
(18) Suppose that G is a group with operation \circ and that H is a subgroup. For $a, b \in G$ define $a \sim b$ if and only if $a \circ b^{-1} \in H$. Prove that \sim is an equivalence relation on G.

Proof. The axioms of a group would be given to you for this problem. Let G be a group and $H \subset G$ a subgroup. Define $a \sim b$ if and only if $a \circ b^{-1} \in H$. We show \sim is reflexive, symmetric, and transitive.
Since $a \circ a^{-1}=\nVdash$ and since $\nVdash \in H$ as it is a group, $a \sim a$. Thus \sim is reflexive.
Suppose that $a \sim b$. By definition $a \circ b^{-1} \in H$. Since H is a subgroup $\left(a \circ b^{-1}\right)^{-1} \in H$. But $\left(a \circ b^{-1}\right)^{-1}=b \circ a^{-1}$ as

$$
\left(a \circ b^{-1}\right) \circ\left(b \circ a^{-1}\right)=a \circ\left(b \circ b^{-1}\right) \circ a^{-1}=\nVdash
$$

and

$$
\left(b \circ a^{-1}\right) \circ\left(a \circ b^{-1}\right)=b \circ\left(a^{-1} \circ a\right) \circ b^{-1}=\nVdash
$$

by associativity and the definition of inverses. Thus, $b \circ a^{-1} \in H$, so $b \sim a$. Thus, \sim is symmetric.
Finally, suppose that $a \sim b$ and $b \sim c$. Then $a \circ b^{-1} \in H$ and $b \circ c^{-1} \in H$. Since H satisfies the closure axiom

$$
\left(a \circ b^{-1}\right) \circ\left(b \circ c^{-1}\right) \in H
$$

However,

$$
\left(a \circ b^{-1}\right) \circ\left(b \circ c^{-1}\right)=a \circ c^{-1}
$$

by associativity, the definition of inverse, and the properties of the identity element. Thus, $a \circ c^{-1} \in$ H so $a \sim c$. Thus, \sim is transitive.
(19) Suppose that $f: A \rightarrow B, g: B \rightarrow C$, and $h: C \rightarrow D$ are functions. Prove

$$
h \circ(g \circ f)=(h \circ g) \circ f
$$

Proof. Recall that by the definition of function composition, $g \circ f: A \rightarrow C$ and $h \circ g: B \rightarrow D$. Thus,

$$
h \circ(g \circ f): A \rightarrow D
$$

and

$$
(h \circ g) \circ f: A \rightarrow D
$$

by the definition of function composition. Consequently, $h \circ(g \circ f)$ and $(h \circ g) \circ f$ have the same domain and codomain.

Now for any $x \in A$, we have:

$$
h \circ(g \circ f)(x)=h(g \circ f(x))=h(g(f(x)))
$$

and

$$
(h \circ g) \circ f(x)=h \circ g(f(x))=h(g(f(x)) .
$$

Thus,

$$
h \circ(g \circ f)(x)=(h \circ g) \circ f(x)
$$

for every $x \in A$. Thus, as $h \circ(g \circ f)$ and $(h \circ g) \circ f$ have the same domain and codomain and produce the same output for an input, they are equal functions.
(20) Use induction to prove that for all $n \in \mathbb{N}^{*}$ there exists $m \in \mathbb{N}^{*}$ such that $n=3 m$ or $n=3 m+1$ or $n=3 m+2$.

Proof. We induct on n. The base case is $n=0$ for which observe that $0=3 \cdot 0$, so the statement holds with $m=0$. Now suppose that there exists a $k \in \mathbb{N}^{*}$ such that there is an $m \in \mathbb{N}^{*}$ with $k=3 m+r$ for some $r \in\{0,1,2\}$. If $r \neq 2$, then $r+1 \in\{1,2\}$ and we have $k+1=3 m+1$ or $k+1=3 m+2$, as desired. If $r=2$, then $k+1=3 m+2+1=3(m+1)$ and the result again holds as $m+1 \in \mathbb{N}^{*}$. Thus by induction the result holds for all $n \in \mathbb{N}^{*}$.
(21) Use induction to prove that every convex polygon with n sides can be divided into ($n-2$) triangles using only edges with endpoints on the corners of the polygon.

Proof. We induct on $n \geq 3$. When $n=3$, the polygon is a triangle and it is automatically tiled with $(n-3)=1$ triangles as required. Suppose that there is a $k \geq 3$ such that every convex polygon with k sides can be tiled with $k-2$ triangles using edges that have their endpoints on the corner of the polygon. Let P be a convex polygon with $k+1$ sides. There are corners v_{1}, v_{2}, v_{3} such that $v_{1} \neq v_{3}$ and v_{1} and v_{2} are the endpoints of a side of P as are v_{2} and v_{3}. Let e be the line segment in \mathbb{R}^{2} joining v_{1} to v_{3}. Since $k+1=4$, this line segment divides P into two polygons A and B, with one of them (say B) being a triangle and the other (A) having k sides (one of which is e). By our induction hypothesis, A can be tiled with $(k-2)$ triangles, each with their edges on the corners of A. Since B is a triangle, those triangles together with B tile P and the edges of the triangles have their endpoints on the corners of P. By induction, every polygon with $n \geq 3$ sides can be subdivided into ($n-2$) triangles using only edges with endpoints on the corners.
(22) Let $x_{0}=\sqrt{2}$ and define $x_{n+1}=\sqrt{2+x_{n}}$ for all $n \in \mathbb{N}^{*}$. Prove that for all $n \in \mathbb{N}^{*}, x_{n+1}>x_{n}$.

Proof. We induct on n. For $n=0, x_{1}=\sqrt{2+\sqrt{2}} \geq \sqrt{2}=x_{0}$. Suppose there is a $k \in \mathbb{N}^{*}$ such that $x_{k+1}>x_{k}$. Then observe that:

$$
x_{(k+1)+1}^{2}=\left(\sqrt{2+x_{k+1}}\right)^{2}=2+x_{k+1} \geq 2+x_{k}
$$

where the inequality arises from the inductive hypothesis. Taking the square root of both sides:

$$
x_{(k+1)+1} \geq \sqrt{2+x_{k}}=x_{k+1} .
$$

Thus, by induction, $x_{n+1} \geq x_{n}$ for all $n \in \mathbb{N}^{*}$.
(23) Give a thorough outline of a proof that if f is a permutation of a set X with $n \geq 2$ elements, then f is the composition of transpositions. (A transposition is a permutation such that there exists distinct a, b such that $f(a)=b$ and $f(b)=f(a)$ and $f(x)=x$ for all $x \neq a, b$.)

Proof. We induct on the number n of elements of X. If $n=2$, then $X=\{a, b\}$ with $a \neq b$. A bijection $f:\{a, b\}$ is either a transposition or the identity. The result holds automatically if f is a transposition. If it is the identity, observe it is the composition of the transposition interchanging a and b with itself.

Suppose that for some $k \geq 2$, every permutation of a set with k elements is the composition of permutations. Let $f: X \rightarrow X$ be a permutation of a set X having $k+1$ elements. Let $x_{0} \in X$. If $f\left(x_{0}\right)=x_{0}$, then $g: X \backslash\left\{x_{0}\right\} \rightarrow X \backslash\left\{x_{0}\right\}$ defined by $g\left(x_{0}\right)=x_{0}$ is the composition of transpositions. Extending those transpositions to have domain and codomain equal to X, we see that f is also a composition of transpositions.
Suppose, therefore, that $f\left(x_{0}\right) \neq x_{0}$. Let $\tau: X \rightarrow X$ be the transposition such that $\tau\left(x_{0}\right)=f\left(x_{0}\right)$ and $\tau\left(f\left(x_{0}\right)\right)=x_{0}$. Then $\tau \circ f\left(x_{0}\right)=x_{0}$. Consequently, by the previous paragraph, there exist transpositions $\tau_{1}, \ldots, \tau_{m}$ such that

$$
\tau \circ f=\tau_{1} \circ \tau_{2} \circ \cdots \circ \tau_{m} .
$$

Noting that $\tau \circ \tau$ is the identity, we have:

$$
f=\tau \circ \tau \circ f=\tau \circ \tau_{1} \circ \tau_{2} \circ \cdots \circ \tau_{m} .
$$

Thus, f is also a composition of transpositions.
(24) (CHALLENGE) Let X be the set of all real-valued functions on the vertices V of a graph G having directed edges and let Y be the set of all real valued functions on the edges E of G. If e is a directed edge of G, let e_{-}be the tail of e and e_{+}be the head of e. Define $\nabla: X \rightarrow Y$ by declaring $\nabla(f): E \rightarrow \mathbb{R}$ to be the function defined by $\nabla(f)(e)=f\left(e_{+}\right)-f\left(e_{-}\right)$for all $e \in E$. Prove that ∇ is surjective if and only if G has no cycles.

Proof. (sketch)

Suppose first that ∇ is surjective. We prove that G has no cycles by contradiction. Suppose that $v_{0}, v_{1}, v_{2}, \ldots, v_{n}$ are the vertices of a cycle ($n \geq 1$). That is for each $i \in\{0, \ldots, n-1\}$ there is an edge E_{i} pointing from v_{i} to v_{i+1} and there is also an edge E_{n} pointing from v_{n} to v_{0}. Let $g \in Y$ be the function such that $g\left(E_{0}\right)=1$ and $g(e)=0$ for every edge of G other than E_{0}. Suppose that there exists $f \in X$ such that $\nabla f=g$. Suppose also that $f\left(v_{0}\right)=c \in \mathbb{R}$. Then $1=\nabla g\left(E_{0}\right)=f\left(v_{1}\right)-f\left(v_{0}\right)$. Thus, $f\left(v_{1}\right)=1+c$. By induction, $f\left(v_{n}\right)=n+c$. However, then

$$
0=\nabla g\left(E_{n}\right)=f\left(v_{0}\right)-f\left(v_{n}\right)=c-(n+c)=-n .
$$

This contradicts the fact that $n \geq 1$.
Suppose now that G has no cycles. We prove that ∇ is surjective. Let $g \in Y$. Without loss of generality, assume G is connected (otherwise, repeat the following argument in each component.) Let v_{0} be a vertex of G. Since G has no cycles, for each vertex $v \in G$, there is a unique path from v_{0} to v. Let $e_{0}, e_{1}, \ldots, e_{m}$ be the edges of that path. (The path may travel backwards along some edges.) Let $v_{1}, v_{2}, \ldots, v_{m+1}=v$ be the vertices of the path so that v_{i} and v_{i+1} are the endpoints of e_{i}. Let $f(v)= \pm g\left(e_{0}\right) \pm g\left(e_{1}\right) \pm \cdots \pm g\left(e_{m}\right)$, where each sign is determined by whether the path travels in the same direction as e_{i} (in which case, use +) or in the opposite direction (in which case use -). For an edge e in the path, the value of $\nabla(f)$ is the difference of the values of f on the endpoints. It follows that it is equal to g. (more details needed)
(25) (Bonus solution) There is a bijection from the interval $[0,1]$ to the interval $(0,1)$.

Proof. For all $n \in \mathbb{N}$, let $s_{n}=\frac{1}{2}+\frac{1}{2 n}$. Observe that if $s_{n}=s_{m}$ then $n=m$. For all $n \in \mathbb{N}$, let $t_{n}=\frac{1}{2}-\frac{1}{2 n}$. Again notice that if $t_{n}=t_{m}$ then $n=m$. Also, there does not exist $n, m \in \mathbb{N}$ such that $s_{n}=t_{m}$. Consequently, we have a function $f:[0,1] \rightarrow[0,1]$ defined by

$$
f(x)= \begin{cases}s_{n+1} & \text { if there exists } n \in \mathbb{N} \text { with } x=s_{n} \\ t_{m+1} & \text { if there exists } m \in \mathbb{N} \text { with } x=t_{m} \\ x & \text { otherwise }\end{cases}
$$

Furthermore, since $s_{1}=1$ and $t_{1}=0$, neither 0 or 1 are in the range of f and that range $f=(0,1)$. Restricting the codomain of f to $(0,1)$, we have a function $f:[0,1] \rightarrow(0,1)$. It has inverse $f^{-1}:(0,1) \rightarrow[0,1]$ given by

$$
f^{-1}(x)= \begin{cases}s_{n-1} & \text { if there exists } n \in \mathbb{N} \text { with } x=s_{n} \text { and } n \geq 2 \\ t_{m-1} & \text { if there exists } m \in \mathbb{N} \text { with } x=t_{m} \text { and } m \geq 2 \\ x & \text { otherwise }\end{cases}
$$

Thus, since f has an inverse it is a bijection.
(26) (Bonus solution) Suppose that $a, b \in \mathbb{N}$. Show there exist $q, r \in \mathbb{N}^{*}$ such that $b=a q+r$ and $r<0$.

Proof. We induct on b, so consider $a \in \mathbb{N}$ to be fixed.
Base Case: $b=1$.
If $a=1$, then $b=a(b)+0$, so letting $q=b$ and $r=0$, we have the desired result. If $a>1$, then $b=a(0)+1$ and letting $q=0$ and $r=1<a$ concludes the base case.

Inductive Step: Assume that there is a $k \in \mathbb{N}$ such that there are $q, r \in \mathbb{N}^{*}$ with $k=a q+r$ and $r<k$. We prove that there exist $q^{\prime}, r^{\prime} \in \mathbb{N}^{*}$ with $k+1=a q^{\prime}+r^{\prime}$ and $r^{\prime}<a$. We split the proof into two cases: $r<a-1$ and $r=a-1$.

Case 1: $r<a-1$.
Let $q^{\prime}=q$ and $r^{\prime}=r+1$. Then $k+1=(a q+r)+1=a q+(r+1)=a q^{\prime}+r^{\prime}$. Since $r<a-1$, $r^{\prime}<a$.
Case 2: $r=a-1$.
Let $q^{\prime}=q+1$ and $r^{\prime}=0$. For then $k+1=(a q+r)+1=a q+(a-1)+1=a(q+1)=a q^{\prime}+r^{\prime}$. Since $r^{\prime}<a$, we have the desired result.

