- (1) The following are examples of equivalence relations:
 - \equiv_p on \mathbb{Z} , where $x \equiv_p y$ iff x y is a multiple of p.

Proof. We show that \equiv_p is reflexive, symmetric, and transitive. Suppose that $n \in \mathbb{Z}$. Then

$$n-n=0=0\cdot p$$

so $n \equiv_p n$. Thus, \equiv_p is reflexive.

Suppose that $n, m \in \mathbb{Z}$. We prove that if $n \equiv_p m$ then $m \equiv_p n$. Assume $n \equiv_p m$. By the definition of \equiv_p , there exists $k \in \mathbb{Z}$ such that

$$n-m=kp$$
.

Thus, by algebra,

$$m-n=(-k)p$$

Since $-k \in \mathbb{Z}$, $m \equiv_p n$. Thus, \equiv_p is symmetric.

Suppose that $n, m, \ell \in \mathbb{Z}$. We prove that if $n \equiv_p m$ and $m \equiv_p \ell$, then $n \equiv_p \ell$. Assume $n \equiv_p m$ and $m \equiv_p \ell$. By the definition of \equiv_p , there exists, $x, y \in \mathbb{Z}$ such that

$$n-m = xp$$
 and
 $m-\ell = yp$

Adding our two equations we obtain

$$n-\ell = (x+y)p.$$

Since $x + y \in \mathbb{Z}$, we have $n \equiv_p \ell$ and so \equiv_p is transitive.

• ~ on $\mathbb{Z} \times \mathbb{N}$ where $(a,b) \sim (c,d)$ iff ad = bc.

Proof. We prove \sim is reflexive, symmetric, and transitive. Let $(a,b) \in \mathbb{Z} \times \mathbb{N}$. Then since ab = ba, $(a,b) \sim (a,b)$ so \sim is transitive. Suppose that $(a,b) \sim (c,d)$. Then by definition of \sim , ad = bc. By the properties of multiplication, cb = da, so $(c,d) \sim (a,b)$. Thus, \sim is symmetric. Finally, assume that $(a,b) \sim (c,d)$ and $(c,d) \sim (e,f)$. By definition of \sim , ad = bc and cf = ed. Multiplying the first equation by f produes:

$$adf = bcf.$$

Use the second equation to substitue cf = ed:

$$adf = bed$$

Since $d \neq 0$, we can divide both sides by d to find af = be. Thus, $(a,b) \sim (e,f)$. Thus, \sim is transitive.

• \sim on the vertex set of a graph G, where $x \sim y$ iff there is a path from x to y in the graph.

Proof. We prove \sim is reflexive, symmetric, and transitive. Suppose that *x* is a vertex of *G*. Then (*x*) is a finite sequence whose initial term is *x* and whose final term is *x* and with the (vacuous) property that each pair of adjacent vertices in the sequence are the endpoints of an edge in *G*. Thus, (*x*) is a path from *x* to *x* and so \sim is reflexive.

Suppose that *x* and *y* are vertices of *G* such that $x \sim y$. We show $y \sim x$. By definition of \sim , there is a path

 $x_0, x_1, ..., x_n$

from $x = x_0$ to $y = x_n$. By definition of path each pair x_i , x_{i+1} of adjacent vertices are the endpoints of an edge in *G*. For each $i \in \{0, ..., n\}$, let $y_i = x_{n-i}$. Then

 y_0, y_1, \ldots, y_n

is the sequence $x_0, ..., x_n$ in reverse order. Thus, $y_0 = x_n = y$ and $y_n = x_0 = x$. Also, if y_i and y_{i+1} are adjacent vertices, then they equal x_{n-i-1} and x_{n-i} respectively and so are adjacent vertices in the path from x to y. Consequently, they are the endpoints of an edge in G. Thus, y_i and y_{i+1} are endpoints of an edge in G. Thus, we have a path from y to x. Consequently, $y \sim x$.

Now suppose that x, y, z are vertices of *G* and that $x \sim y$ and $y \sim z$. We show $x \sim z$. By definition of \sim , there is a path

$$x_0, x_1, \ldots, x_n$$

from *x* to *y* and also a path

$$y_0,\ldots,y_m$$

from *y* to *z*. Notice that $x_n = y = y_0$. We claim that the sequence

$$x_0, x_1, \ldots, x_n, y_1, \ldots, y_m$$

is a path from *x* to *z*. Recall that $x_0 = x$ and $y_m = z$. Any pair of adjacent vertices in the sequence is either x_i, x_{i+1} for $i \in \{0, ..., n-1\}$ or y_i, y_{i+1} for $i \in \{1, ..., m-1\}$ or x_n, y_1 . In the first two cases, the adjacent vertices are endpoints of edges since they were in the paths from *x* to *y* and from *y* to *z*. In the third case we have $x_n = y_0$ so x_n and y_1 are also the endpoints of an edge in *G*. Consequently, there is a path from *x* to *z*. Thus, $x \sim z$ by definition of \sim and so \sim is transitive.

• Suppose that *P* is a partition of a non-empty set *X*. Define ~ on *X* by *x* ~ *y* iff there exists *A* ∈ *P* such that *x*, *y* are both elements of *A*.

Proof. We prove that \sim is reflexive, symmetric and transitive. Let $x \in X$. By the covering property of partitions, there exists $A \in P$ such that $x \in A$. Thus, there exists $A \in P$ such that $x \in A$ and $x \in A$. Consequently, $x \sim x$. Thus, \sim is reflexive.

Now suppose that $x, y \in X$ and that $x \sim y$. By definition of \sim , there exists $A \in P$ such that $x \in A$ and $y \in A$. By the definition of conjunction, $y \in A$ and $x \in A$. Thus, $y \sim x$. Thus, \sim is symmetric.

Assume that $x, y, z \in X$, that $x \sim y$ and that $y \sim x$. Thus, there exists $A \in P$ and $B \in P$ so that $x, y \in A$ and $y, z \in B$ by definition of \sim . Observe that $y \in A \cap B$. Since $A \cap B \neq \emptyset$ we must have A = B by the pairwise disjoint condition for partitions. Thus, $x, z \in B = A$. Therefore, $x \sim z$. So \sim is transitive.

(2) Suppose that \sim is an equivalence relation on a non-empty set *X*. For each $x \in X$, let [x] be the equivalence class of *x*. Then the following hold:

(a) For all $x \in X$, $x \in [x]$.

(b) For all $x, y \in X$, $x \sim y$ iff [x] = [y].

(c) For all $x, y \in X$, $[x] \cap [y] \neq \emptyset$ implies [x] = [y].

Proof. Assume that \sim is an equivalence relation. Recall that $[x] = \{y \in X : x \sim y\}$. Since \sim is reflexive, $x \sim x$. Thus, $x \in [x]$.

Suppose that $x \sim y$. We show that $[x] \subset [y]$. Let $z \in [x]$. Thus, $x \sim z$ by definition of equivalence class. Since \sim is symmetric, $y \sim x$. Since \sim is transitive, $y \sim z$. Thus, $z \in [y]$. Since z was arbitrary, $[x] \subset [y]$. The same proof applied to the expression $y \sim x$ (since \sim is symmetric) shows that $[y] \subset [x]$. Thus, [x] = [y]. Thus, if $x \sim y$, then [x] = [y].

Now suppose that [x] = [y]. By the first, part $y \in [y]$. By the definition of set equality, $y \in [x]$. By definition of equivalence class, $x \sim y$. Thus, [x] = [y] implies $x \sim y$.

Finally, suppose that $x, y \in X$ and that $[x] \cap [y] \neq \emptyset$. We show [x] = [y]. Since $[x] \cap [y] \neq \emptyset$, there exists $z \in [x] \cap [y]$. By definition of intersection $z \in [x]$ and $z \in [y]$. By definition of equivalence class, $x \sim z$ and $y \sim z$. By the second part, [x] = [z] and [y] = [z]. Thus, [x] = [y].

(3) If \sim is an equivalence relation on a non-empty set *X*, then the set of equivalence classes is a partition of *X*.

Proof. From the theorem above, for every $x \in X$, $x \in [x]$ so X / \sim satisfies the covering property. If $A \in X / \sim$ then by definition, there exists $x \in X$ such that A = [x]. Since $x \in [x]$, no element of X / \sim is empty. If $A, B \in X / \sim$ and $A \cap B \neq \emptyset$, then A = B by the final conclusion of the previous theorem.

(4) If $f: \mathbb{Z}/\equiv_p \to \mathbb{Z}/\equiv_p$ is defined by f([x]) = [2x] then f is well-defined.

Proof. Suppose that [x] = [y]. By the Fundamental Properties of Equivalence Relations, $x \equiv_p y$. By the definition of \equiv_p , there exists $k \in \mathbb{Z}$ such that x = y + pk. Then

$$2x = 2y + p(2k).$$

Since $2k \in \mathbb{Z}$, $2x \equiv_p 2y$. By the Fundamental Properties of Equivalence Relations, [2x] = [2y]. Thus, f([x]) = f([y]) and f is well-defined.

(5) Addition and multiplication in \mathbb{Z} / \equiv_p are well-defined.

Proof. We just prove that multiplication is well-defined. Suppose that [x] = [x'] and [y] = [y']. We need to show that [x][y] = [x'][y'].

Since [x] = [x'] by the Fundamental Properties of Equivalence Relations, $x \equiv_p x'$. Likewise, $y \equiv_p y'$. By definition of \equiv_p , there exists $k, \ell \in \mathbb{Z}$ so that

$$\begin{array}{rcl} x & = & x' + pk \\ y & = & y' + p\ell. \end{array}$$

Multiplying we get:

$$xy = x'y' + p(\ell x' + ky' + pk\ell).$$

Thus, $xy \equiv_p x'y'$ and so $[x][y] = [xy] = [x'y'] = [x'][y']$ as desired.

(6) The compositions of injections/surjections/bijections is a an injection/surjection/bijection.

Proof. Suppose that $f: X \to Y$ and $g: Y \to Z$ are functions.

Claim 1: If f and g are both injections, so is $g \circ f$.

Let $a, b \in X$ and assume that $g \circ f(a) = g \circ f(b)$. That is, g(f(a)) = g(f(b)). Since g is injective, f(a) = f(b). Since f is injective, a = b. Thus, $g \circ f$ is also injective.

Claim 2: If f and g are both surjections, so is $g \circ f$.

Let $z \in Z$. Since g is surjective, there exists $y \in Y$ such that g(y) = z. Since f is surjective there exists $x \in X$ so that f(x) = y. Then

$$g \circ f(x) = g(f(x)) = g(y) = z.$$

Thus, $g \circ f$ is surjective.

Claim 3: If f and g are bijections, so is $g \circ f$.

This follows immediately from Claims 1 and 2 and the definition of bijection.

(7) A function $f: X \to Y$ is a bijection if and only if there is a function $f^{-1}: Y \to X$ such that $f \circ f^{-1}(y) = y$ for all $y \in Y$ and $f^{-1} \circ f(x) = x$ for all $x \in X$.

Proof. Suppose, first, that $f: X \to Y$ is a bijection. Define $g: Y \to X$ as follows. If f(x) = y, let g(y) = x. We claim g is a function. Since f is surjective, for every $y \in Y$, there exists $x \in X$ with f(x) = y. Thus, g satisfies the domain condition. Suppose $y_1 = y_2$ and that $f(x_1) = y_1$ and $f(x_2) = y_2$. Then $f(x_1) = f(x_2)$, so since f is injective $x_1 = x_2$. Thus, $g(y_1) = x_1 = x_2 = g(y_2)$, so g satisfies the well-defined condition. We now claim that g is the inverse of f. Let $x \in X$ and let y = f(x). Then $g \circ f(x) = g(f(x)) = g(y) = x$. The first equality is the definition of composition, the second is the definition of y, and the third is the definition of g. Similarly, suppose that $y \in Y$ and let x = g(y). Then $f \circ g(y) = f(g(y)) = f(x) = y$, with the last equation coming from the definition of g and x.

Finally note that $g \circ f \colon X \to X$ by the definition of function composition, so it has the same domain and codomain as the identity function on *X*. Since it takes the same value on each element of *X* as does the identity function, it is equal to the identity function. Likewise $f \circ g \colon Y \to Y$ is equal to the identity function on *Y*.

Thus, g is the inverse function to f; traditionally denoted f^{-1} .

(8) The set of bijections from a set X to itself is a group, with function composition as the operation.

Proof. Let *G* be the set of bijections from *X* to itself with function composition as the operation. We just proved above that if *f* and *g* are bijections, so is $g \circ f$. Thus, *G* satisfies (G1). Set $\not\models = id_X$. Observe it is a bijection since it is it's own inverse function. If $f: X \to Y$ is a bijection, then

$$f: \mathscr{W}(x) = f: \operatorname{id}_X(x) = f(\operatorname{id}_X(x)) = f(x)$$

and

 $\mathscr{H}: f(x) = \mathrm{id}_X: f(x) = \mathrm{id}_X(f(x)) = f(x)$

for all $x \in X$, by definition of id_X and function composition. Thus, the functions f and $f \circ \not\Vdash$ and $\not\Vdash \circ f$ are all equal. Thus, $\not\Vdash$ is a group identity element for G.

We proved above that if $f \in G$, then f has an inverse function f^{-1} . Since $f = (f^{-1})^{-1}$, f^{-1} has an inverse and is also a bijection. Hence, $f^{-1} \in G$. Also, by definition, $f: f^{-1} = id_X = f^{-1}: f$ and so since $\mathbb{H} = id_X$, we have that f^{-1} is the group inverse for f.

Finally, it was proved in class that function composition is associative. Thus G is a group.

 \Box

(9) The function $f: \mathbb{Z}/\equiv_{10} \to \mathbb{Z}/\equiv_{10}$ defined by f([x]) = [2x] is not injective or surjective.

Proof. Observe that $f([0]) = [2 \cdot 0] = [0]$ and $f([5]) = [2 \cdot 5] = [10] = [0]$. Since $[0] \neq [5]$ in \mathbb{Z} / \equiv_{10} , f is not injective.

The function f is not surjective, for $[1] \notin \text{range } f$. To see this, suppose (for a contradiction) that f([x]) = [1] for some $[x] \in \mathbb{Z} / \equiv_{10}$. Then

$$[2x] = [1]$$

By the fundamental properties of equivalence relations and the definition of \equiv_{10} , there exists $k \in \mathbb{Z}$ so that

$$2x = 1 + 10k$$

Thus,

$$l = 2(5k-1)$$

But 1 is not an even integer, and so we have a contradiction.

(10) The function $f: \mathbb{Z}/\equiv_{10} \to \mathbb{Z}/\equiv_{10}$ defined by f([x]) = [3x] is injective and surjective.

Proof. Suppose that f([a]) = f([b]). By definition of f,

$$[3a] = [3b]$$

By the fundamental properties of equivalence relations and the definition of \equiv_{10} ,

$$3a = 3b + 10k$$

for some $k \in \mathbb{Z}$. Consequently,

$$3(a-b-3k) = k$$

Set m = (a - b - 3k), so k = 3m. Thus,

$$3(a-b) = 30m$$

We see that

$$(a-b) = 10m.$$

Thus, $a \equiv_{10} b$ and so [a] = [b]. Thus, f is injective.

To see that $f: \mathbb{Z} / \equiv_{10} \to \mathbb{Z} / \equiv_{10}$ is surjective, let $[y] \in \mathbb{Z} / \equiv_{10}$. We must find an $[x] \in \mathbb{Z} / \equiv_{10}$ so that [3x] = [y].

We could do this by just computing f([x]) for every $[x] \in \mathbb{Z}/\equiv_{10}$ and seeing that there will be an [x] such that f([x]) = [y] for every [y]. For fun, we take a slightly different approach.

Observe first that if $[a], [b] \in \mathbb{Z} / \equiv_{10}$ then

$$f([a] + [b]) = f([a+b]) = [3(a+b)] = [3a] + [3b] = f([a]) + f([b]).$$

Thus, if $[w], [y] \in \text{range } f$, then there exist $[a], [b] \in \mathbb{Z} / \equiv_{10}$ so that f([a]) = [w] and f([b]) = [y]. In which case,

$$f([a] + [b]) = f([a]) + f([b]) = [w] + [y],$$

so $[w] + [y] \in \mathbb{Z} / \equiv_{10}$.

Now notice that f([7]) = [21] = [1]. Now suppose that $[y] \in \mathbb{Z} / \equiv_{10}$. Without loss of generality, we may assume that $y \ge 0$ (otherwise replace y with y + 10|y|). Then

$$[y] = \underbrace{[1] + \dots + [1]}_{y \text{ times}}.$$

By our previous remarks, this means that

$$[y] = f\left(\underbrace{[7] + \dots + [7]}_{y \text{ times}}\right)$$

Thus, f is surjective.

- (11) Define \sim on $\mathbb{Z} \times \mathbb{N}$ by declaring $(x, y) \sim (a, b)$ if and only if xb = ya. Prove the following:
 - (a) \sim is an equivalence relation

Proof. This was done above.

(b) If we define [(a,b)] + [(c,d)] to be [(ad + bc,bd)] then addition on $\mathbb{Z} \times \mathbb{N} / \sim$ is well-defined.

Proof. Suppose that [(a,b)] = [(a',b')] and [(c,d)] = [(c',d')]. We show that [(a,b)] + [(c,d)] = [(a',b')] + [(c',d')]. By definition of equivalence class, $(a,b) \sim (a',b')$ and (c,d) = (c',d'). By definition of the equivalence relation:

$$ab' = a'b$$

$$cd' = c'd$$

We want to show that [(ad + bc, bd)] = [(a'd' + b'c', b'd')]. This is equivalent to showing:

$$(ad+bc,bd) \sim (a'd'+b'c',b'd')$$

To show that, by the definition of \sim it suffices to show:

$$(ad+bc)b'd' = (a'd'+b'c')bd$$

We now do that, using the two equations above.

$$\begin{array}{rcl} (ad+bc)b'd' &=& adb'd'+bcb'd'\\ &=& (ab')dd'+(cd')bb'\\ &=& a'bdd'+c'dbb'\\ &=& (a'd'+b'c')bd \end{array}$$

which is what we want.

(c) If we define $[(a,b)] \cdot [(c,d)]$ to be [(ac,bd)] then multiplication on $\mathbb{Z} \times \mathbb{N} / \sim$ is well-defined.

Proof. Suppose that [(a,b)] = [(a',b')] and [(c,d)] = [(c',d')]. We show that $[(a,b)] \cdot [(c,d)] = [(a',b')] \cdot [(c',d')]$. By definition of equivalence class, $(a,b) \sim (a',b')$ and (c,d) = (c',d'). By definition of the equivalence relation:

$$ab' = a'b$$
$$cd' = c'd$$

Multiplying the first equation by *cd*':

ab'cd' = a'bcd'

Substitute on the right hand side using the second equation:

$$ab'cd' = a'bc'd$$

Thus,

$$(ac)(b'd') = (bd)(a'c').$$

By the definition of \sim :

$$(ac,bd) \sim (a'c',b'd').$$

Hence,

$$[(a,b)] \cdot [(c,d)] = [(ac,bd)] = [(a'c',b'd')] = [(a',b')] \cdot [(c',d')]$$

by the definition of multiplication.

(12) If $T : \mathbb{R} \to \mathbb{R}$ is a function such that T(0) = 0, T(1) = 1, and |T(x) - T(y)| = |x - y| for all $x, y \in \mathbb{R}$, then $T = id|_{\mathbb{R}}$.

Proof. Let *T* be as in the hypothesis of the statement. Note that by definition the function $id|_{\mathbb{R}}$ has \mathbb{R} as its domain and codomain, so *T* and $id|_{\mathbb{R}}$ have the same domain and codomain. Let $x \in \mathbb{R}$ be arbitrary. We show that T(x) = x. Since $id_{\mathbb{R}}(x) = x$, by definition, this will show that $T = id|_{\mathbb{R}}$.

Since T is distance-preserving: |T(x) - T(0)| = |x - 0| = |x|. Since T(0) = 0, this means |T(x)| = |x|. Thus, $T(x) = \pm x$. If T(x) = x, we are done, so suppose that T(x) = -x. Likewise,

$$|-x-1| = |T(x)-1| = |T(x)-T(1)| = |x-1|$$

Thus, $-x-1 = \pm (x-1)$. If we use the minus sign on the right, then -1 = +1, a contradiction. Thus, we must use the plus sign. That is, -x-1 = x-1. Thus, x = 0. Since T(0) = 0 by assumption, we have T(x) = x, even in this case. Thus, T(x) = x, no matter what $x \in \mathbb{R}$ is.

(13) Let X be a nonempty set and let \mathscr{D} be the set of all metrics on X. For $d, d' \in \mathscr{D}$ define $d \sim d'$ if and only if there exists $K \ge 1$, and $C \ge 0$ such that

$$\frac{1}{K}d(x,y) - C \le d'(x,y) \le Kd(x,y) + C$$

for all $x, y \in X$. Prove that \sim is an equivalence relation.

Proof. We show that \sim is reflexive, symmetric, and transitive. For simplicity, in what follows we use function notation and write *d* rather than constantly writing things like d(x,y) for all $x, y \in X$.

Let $d \in \mathcal{D}$. Choosing K = 1 and C = 0, we see that $d \sim d$.

Suppose $d, d' \in \mathcal{D}$ and $d \sim d'$. By definition of \sim , there exist $K \ge 1$ and $C \ge 0$ with

$$\frac{1}{K}d - C \le d' \le Kd + C$$

That is,

$$\begin{array}{rcl} d' & \leq & Kd + C \\ d' & \geq & \frac{1}{K}d - C \end{array}$$

Solving the two inequalities for *d* produces

$$\frac{\frac{1}{K}d' - \frac{C}{K}}{Kd' + CK} \leq d$$

Observe that $-CK \leq -\frac{C}{K}$, since $C \geq 0$ and $K \geq 1$. Thus, we also have

$$\frac{1}{K}d' - CK \le d$$

Thus,

$$\frac{1}{K}d' - CK \le d \le Kd' + CK$$

Setting C' = CK, we have shown that there exist $C' \ge 0$ and $K \ge 1$ so that

$$\frac{1}{K}d' - C' \le d \le Kd' + C'.$$

Thus, $d' \sim d$.

Now suppose that $d_1, d_2, d_3 \in \mathcal{D}$ so that $d_1 \sim d_2$ and $d_2 \sim d_3$. Then by definition there exist $J, K \ge 1$ and $C, D \ge 0$ so that

$$egin{array}{rcl} d_2&\leq&Jd_1+C\ d_3&\leq&Kd_2+D\ d_2&\geq&rac{1}{J}d_1-C\ d_3&\geq&rac{1}{K}d_2-D \end{array}$$

Substituting the first inequality into the second and the third into the fourth (using the fact that $K \ge 0$ and $d_1 \ge 0$) we obtain:

$$egin{array}{rcl} d_3&\leq&KJd_1+KC+D\ d_3&\geq&rac{1}{KJ}d_2-rac{C}{K}-D. \end{array}$$

Let K' = KJ and observe that $K' \ge 1$ since $K, J \ge 1$. Let C' = KC + D. Notice that since $K \ge 1$, we have $C' \ge \frac{C}{K} - D$. Thus,

$$\frac{1}{K'}d_1 - C' \le d_3 \le K'd_1 + C'$$

Thus, $d_1 \sim d_3$, as desired. So \sim is also transitive.

(14) (CHALLENGE) Consider the equivalence relation \sim on \mathscr{D} in the previous problem. Recall that if d and d' are metrics on X, then we can define d + d' by

$$(d+d')(x,y) = d(x,y) + d'(x,y)$$

for all $x, y \in X$ and that d + d' is a metric on X. Define + on \mathscr{D} / \sim by

$$[d] + [d'] = [d + d']$$

for all $d, d' \in \mathcal{D}$. Prove that + is well-defined on \mathcal{D} / \sim .

- (15) Let X be a set and let $\mathscr{F} = \{f : X \to \mathbb{R}\}$ be the set of all functions from X to \mathbb{R} . Recall that for $f, g \in \mathscr{F}$, the functions f + g and $f \cdot g$ are defined by letting (f + g)(x) = f(x) + g(x) and $f \cdot g(x) = f(x)g(x)$ for all $x \in X$. Define \sim on \mathscr{F} by declaring $f \sim f'$ if and only if there exists $M \ge 0$ such that $|f(x) - f'(x)| \le M$ for all $x \in X$.
 - (a) Prove that \sim is an equivalence relation on \mathscr{F} .
 - (b) Define + and \cdot on \mathscr{F} / \sim by [f] + [g] = [f + g] and $[f] \cdot [g] = [f \cdot g]$. Prove that + is well-defined and \cdot is not.

Proof. We show that \sim is reflexive, symmetric, and transitive. It is reflexive, because $|f(x) - f(x)| = 0 \le 1$, for all $x \in X$. Thus, $f \sim f$. It is reflexive, because if $f \sim g$, then for all $x \in X$, $|f(x) - g(x)| \le M$. Thus, $|g(x) - f(x)| = |f(x) - g(x)| \le M$ for all $x \in X$. Thus, $g \sim f$. Suppose that $f \sim g$ and $g \sim h$. By definition of \sim , there exist $M_1, M_2 \ge 0$ such that

$$|f(x) - g(x)| \leq M_1$$
 and
 $|g(x) - h(x)| \leq M_2$

for all $x \in \mathbb{R}$. Then adding our two equations:

$$M_1 + M_2 \ge |f(x) - g(x)| + |g(x) - h(x)| \ge |f(x) - g(x) + g(x) - h(x)| = |f(x) - h(x)|$$

for all $x \in \mathbb{R}$. (The second inequality comes from the triangle inequality for absolute value.) Thus, $f \sim h$ as desired.

Suppose that [f] = [f'] and [g] = [g']. We show [f] + [g] = [f'] + [g']. Since [f] = [f'], $f \sim f'$. Thus, there exists $M_1 \ge 0$ such that $|f(x) - f'(x)| \le M_1$ for every $x \in \mathbb{R}$. Similarly, there exists $M_2 \ge 0$ such that $|g(x) - g'(x)| \le M_2$. Using the same trick as in our proof of transitivity, we add the inequalities:

$$M_1 + M_2 \ge |f(x) - f'(x)| + |g(x) - g'(x)| \ge |f(x) - f'(x) + g(x) - g'(x)| = |(f(x) + g(x)) - (f'(x) - g'(x))|$$

for all $x \in \mathbb{R}$. Thus, $(f+g) \sim (f'+g')$. Consequently, [f+g] = [f'+g'] and so [f]+[g] = [f']+[g'] as in the definition of addition for equivalence classes.

To see that multiplication is not well-defined, for all $x \in \mathbb{R}$, let $f(x) = e^x$ and $f'(x) = e^x + 5$. Let g(x) = x and g'(x) = x + 3. Note that $f \sim f'$ and $g \sim g'$. However, for all $x \in \mathbb{R}$:

$$\begin{aligned} |f(x)g(x) - f'(x)g'(x)| &= |xe^x - (x+3)(e^x+5)| \\ &= |xe^x - xe^x - 3e^x - 5x - 15| \\ &= |3e^x + 5x + 15| \end{aligned}$$

Since $\lim_{x\to\infty} 3e^x + 5x + 15 = \infty$, the difference of the products is not bounded. Thus, $fg \not\sim f'g'$ and so multiplication is not well-defined on equivalence classes.

(16) Suppose that $f: A \to B, g: B \to C$, and $h: C \to D$ are functions. Prove

$$h \circ (g \circ f) = (h \circ g) \circ f$$

(17) There is a bijection from the interval (-10, 10) to the interval (1, 2).

Proof. Let $f(x) = \frac{1}{20}(x-1) + 2$ for all $x \in (-10, 10)$. Observe that $f: (-10, 10) \rightarrow (1, 2)$ is a function with inverse

$$f^{-1}(y) = 20(y-2) + 1$$

for all $y \in (1,2)$. Since *f* has an inverse function it is a bijection.

(18) Suppose that *G* is a group with operation \circ and that *H* is a subgroup. For $a, b \in G$ define $a \sim b$ if and only if $a \circ b^{-1} \in H$. Prove that \sim is an equivalence relation on *G*.

Proof. The axioms of a group would be given to you for this problem. Let *G* be a group and $H \subset G$ a subgroup. Define $a \sim b$ if and only if $a \circ b^{-1} \in H$. We show \sim is reflexive, symmetric, and transitive.

Since $a \circ a^{-1} = \mathbb{W}$ and since $\mathbb{W} \in H$ as it is a group, $a \sim a$. Thus \sim is reflexive.

Suppose that $a \sim b$. By definition $a \circ b^{-1} \in H$. Since H is a subgroup $(a \circ b^{-1})^{-1} \in H$. But $(a \circ b^{-1})^{-1} = b \circ a^{-1}$ as

$$(a \circ b^{-1}) \circ (b \circ a^{-1}) = a \circ (b \circ b^{-1}) \circ a^{-1} = \mathbb{W}$$

and

$$(b \circ a^{-1}) \circ (a \circ b^{-1}) = b \circ (a^{-1} \circ a) \circ b^{-1} = \mathbb{K}$$

by associativity and the definition of inverses. Thus, $b \circ a^{-1} \in H$, so $b \sim a$. Thus, \sim is symmetric.

Finally, suppose that $a \sim b$ and $b \sim c$. Then $a \circ b^{-1} \in H$ and $b \circ c^{-1} \in H$. Since H satisfies the closure axiom

$$(a \circ b^{-1}) \circ (b \circ c^{-1}) \in H$$

However,

$$(a \circ b^{-1}) \circ (b \circ c^{-1}) = a \circ c^{-1}$$

by associativity, the definition of inverse, and the properties of the identity element. Thus, $a \circ c^{-1} \in H$ so $a \sim c$. Thus, \sim is transitive.

(19) Suppose that $f: A \to B, g: B \to C$, and $h: C \to D$ are functions. Prove

$$h \circ (g \circ f) = (h \circ g) \circ f$$

Proof. Recall that by the definition of function composition, $g \circ f \colon A \to C$ and $h \circ g \colon B \to D$. Thus,

$$h \circ (g \circ f) \colon A \to D$$

and

$$(h \circ g) \circ f \colon A \to D$$

by the definition of function composition. Consequently, $h \circ (g \circ f)$ and $(h \circ g) \circ f$ have the same domain and codomain.

Now for any $x \in A$, we have:

$$h \circ (g \circ f)(x) = h(g \circ f(x)) = h(g(f(x)))$$

and

$$(h \circ g) \circ f(x) = h \circ g(f(x)) = h(g(f(x))).$$

Thus,

 $h \circ (g \circ f)(x) = (h \circ g) \circ f(x)$

for every $x \in A$. Thus, as $h \circ (g \circ f)$ and $(h \circ g) \circ f$ have the same domain and codomain and produce the same output for an input, they are equal functions.

(20) Use induction to prove that for all $n \in \mathbb{N}^*$ there exists $m \in \mathbb{N}^*$ such that n = 3m or n = 3m + 1 or n = 3m + 2.

Proof. We induct on *n*. The base case is n = 0 for which observe that $0 = 3 \cdot 0$, so the statement holds with m = 0. Now suppose that there exists a $k \in \mathbb{N}^*$ such that there is an $m \in \mathbb{N}^*$ with k = 3m + r for some $r \in \{0, 1, 2\}$. If $r \neq 2$, then $r + 1 \in \{1, 2\}$ and we have k + 1 = 3m + 1 or k + 1 = 3m + 2, as desired. If r = 2, then k + 1 = 3m + 2 + 1 = 3(m + 1) and the result again holds as $m + 1 \in \mathbb{N}^*$. \Box

(21) Use induction to prove that every convex polygon with *n* sides can be divided into (n-2) triangles using only edges with endpoints on the corners of the polygon.

Proof. We induct on $n \ge 3$. When n = 3, the polygon is a triangle and it is automatically tiled with (n-3) = 1 triangles as required. Suppose that there is a $k \ge 3$ such that every convex polygon with k sides can be tiled with k-2 triangles using edges that have their endpoints on the corner of the polygon. Let P be a convex polygon with k+1 sides. There are corners v_1, v_2, v_3 such that $v_1 \ne v_3$ and v_1 and v_2 are the endpoints of a side of P as are v_2 and v_3 . Let e be the line segment in \mathbb{R}^2 joining v_1 to v_3 . Since k+1=4, this line segment divides P into two polygons A and B, with one of them (say B) being a triangle and the other (A) having k sides (one of which is e). By our induction hypothesis, A can be tiled with (k-2) triangles, each with their edges on the corners of A. Since B is a triangle, those triangles together with B tile P and the edges of the triangles have their endpoints on the corners of P. By induction, every polygon with $n \ge 3$ sides can be subdivided into (n-2) triangles using only edges with endpoints on the corners.

(22) Let $x_0 = \sqrt{2}$ and define $x_{n+1} = \sqrt{2 + x_n}$ for all $n \in \mathbb{N}^*$. Prove that for all $n \in \mathbb{N}^*$, $x_{n+1} > x_n$.

Proof. We induct on *n*. For n = 0, $x_1 = \sqrt{2 + \sqrt{2}} \ge \sqrt{2} = x_0$. Suppose there is a $k \in \mathbb{N}^*$ such that $x_{k+1} > x_k$. Then observe that:

$$x_{(k+1)+1}^2 = (\sqrt{2+x_{k+1}})^2 = 2+x_{k+1} \ge 2+x_k$$

where the inequality arises from the inductive hypothesis. Taking the square root of both sides:

$$x_{(k+1)+1} \ge \sqrt{2+x_k} = x_{k+1}.$$

Thus, by induction, $x_{n+1} \ge x_n$ for all $n \in \mathbb{N}^*$.

(23) Give a thorough outline of a proof that if f is a permutation of a set X with $n \ge 2$ elements, then f is the composition of transpositions. (A transposition is a permutation such that there exists distinct a, b such that f(a) = b and f(b) = f(a) and f(x) = x for all $x \ne a, b$.)

Proof. We induct on the number *n* of elements of *X*. If n = 2, then $X = \{a, b\}$ with $a \neq b$. A bijection $f: \{a, b\}$ is either a transposition or the identity. The result holds automatically if *f* is a transposition. If it is the identity, observe it is the composition of the transposition interchanging *a* and *b* with itself.

Suppose that for some $k \ge 2$, every permutation of a set with k elements is the composition of permutations. Let $f: X \to X$ be a permutation of a set X having k + 1 elements. Let $x_0 \in X$. If $f(x_0) = x_0$, then $g: X \setminus \{x_0\} \to X \setminus \{x_0\}$ defined by $g(x_0) = x_0$ is the composition of transpositions. Extending those transpositions to have domain and codomain equal to X, we see that f is also a composition of transpositions.

Suppose, therefore, that $f(x_0) \neq x_0$. Let $\tau \colon X \to X$ be the transposition such that $\tau(x_0) = f(x_0)$ and $\tau(f(x_0)) = x_0$. Then $\tau \circ f(x_0) = x_0$. Consequently, by the previous paragraph, there exist transpositions τ_1, \ldots, τ_m such that

$$\tau \circ f = \tau_1 \circ \tau_2 \circ \cdots \circ \tau_m.$$

Noting that $\tau \circ \tau$ is the identity, we have:

$$f = \tau \circ \tau \circ f = \tau \circ \tau_1 \circ \tau_2 \circ \cdots \circ \tau_m$$

Thus, f is also a composition of transpositions.

(24) (CHALLENGE) Let X be the set of all real-valued functions on the vertices V of a graph G having directed edges and let Y be the set of all real valued functions on the edges E of G. If e is a directed edge of G, let e₋ be the tail of e and e₊ be the head of e. Define ∇: X → Y by declaring ∇(f): E → ℝ to be the function defined by ∇(f)(e) = f(e₊) - f(e₋) for all e ∈ E. Prove that ∇ is surjective if and only if G has no cycles.

Proof. (sketch)

Suppose first that ∇ is surjective. We prove that *G* has no cycles by contradiction. Suppose that $v_0, v_1, v_2, \ldots, v_n$ are the vertices of a cycle $(n \ge 1)$. That is for each $i \in \{0, \ldots, n-1\}$ there is an edge E_i pointing from v_i to v_{i+1} and there is also an edge E_n pointing from v_n to v_0 . Let $g \in Y$ be the function such that $g(E_0) = 1$ and g(e) = 0 for every edge of *G* other than E_0 . Suppose that there exists $f \in X$ such that $\nabla f = g$. Suppose also that $f(v_0) = c \in \mathbb{R}$. Then $1 = \nabla g(E_0) = f(v_1) - f(v_0)$. Thus, $f(v_1) = 1 + c$. By induction, $f(v_n) = n + c$. However, then

$$0 = \nabla g(E_n) = f(v_0) - f(v_n) = c - (n+c) = -n.$$

This contradicts the fact that $n \ge 1$.

Suppose now that *G* has no cycles. We prove that ∇ is surjective. Let $g \in Y$. Without loss of generality, assume *G* is connected (otherwise, repeat the following argument in each component.) Let v_0 be a vertex of *G*. Since *G* has no cycles, for each vertex $v \in G$, there is a unique path from v_0 to v. Let e_0, e_1, \ldots, e_m be the edges of that path. (The path may travel backwards along some edges.) Let $v_1, v_2, \ldots, v_{m+1} = v$ be the vertices of the path so that v_i and v_{i+1} are the endpoints of e_i . Let $f(v) = \pm g(e_0) \pm g(e_1) \pm \cdots \pm g(e_m)$, where each sign is determined by whether the path travels in the same direction as e_i (in which case, use +) or in the opposite direction (in which case use -). For an edge e in the path, the value of $\nabla(f)$ is the difference of the values of f on the endpoints. It follows that it is equal to g. (more details needed)

(25) (Bonus solution) There is a bijection from the interval [0,1] to the interval (0,1).

Proof. For all $n \in \mathbb{N}$, let $s_n = \frac{1}{2} + \frac{1}{2n}$. Observe that if $s_n = s_m$ then n = m. For all $n \in \mathbb{N}$, let $t_n = \frac{1}{2} - \frac{1}{2n}$. Again notice that if $t_n = t_m$ then n = m. Also, there does not exist $n, m \in \mathbb{N}$ such that $s_n = t_m$. Consequently, we have a function $f: [0,1] \to [0,1]$ defined by

$$f(x) = \begin{cases} s_{n+1} & \text{if there exists } n \in \mathbb{N} \text{ with } x = s_n \\ t_{m+1} & \text{if there exists } m \in \mathbb{N} \text{ with } x = t_m \\ x & \text{otherwise} \end{cases}$$

Furthermore, since $s_1 = 1$ and $t_1 = 0$, neither 0 or 1 are in the range of f and that range f = (0, 1). Restricting the codomain of f to (0, 1), we have a function $f: [0, 1] \to (0, 1)$. It has inverse $f^{-1}: (0, 1) \to [0, 1]$ given by

$$f^{-1}(x) = \begin{cases} s_{n-1} & \text{if there exists } n \in \mathbb{N} \text{ with } x = s_n \text{ and } n \ge 2\\ t_{m-1} & \text{if there exists } m \in \mathbb{N} \text{ with } x = t_m \text{ and } m \ge 2\\ x & \text{otherwise }. \end{cases}$$

Thus, since f has an inverse it is a bijection.

(26) (Bonus solution) Suppose that $a, b \in \mathbb{N}$. Show there exist $q, r \in \mathbb{N}^*$ such that b = aq + r and r < 0.

Proof. We induct on *b*, so consider $a \in \mathbb{N}$ to be fixed.

Base Case: b = 1.

If a = 1, then b = a(b) + 0, so letting q = b and r = 0, we have the desired result. If a > 1, then b = a(0) + 1 and letting q = 0 and r = 1 < a concludes the base case.

Inductive Step: Assume that there is a $k \in \mathbb{N}$ such that there are $q, r \in \mathbb{N}^*$ with k = aq + r and r < k. We prove that there exist $q', r' \in \mathbb{N}^*$ with k + 1 = aq' + r' and r' < a. We split the proof into two cases: r < a - 1 and r = a - 1.

Case 1: *r* < *a*−1.

Let q' = q and r' = r + 1. Then k + 1 = (aq + r) + 1 = aq + (r + 1) = aq' + r'. Since r < a - 1, r' < a.

Case 2: r = a - 1.

Let q' = q + 1 and r' = 0. For then k + 1 = (aq + r) + 1 = aq + (a - 1) + 1 = a(q + 1) = aq' + r'. Since r' < a, we have the desired result.

-		_
Е		п
L		1
н		
L		_