
MA 274: Exam 2 Study Guide Partial Solutions

(1) The following are examples of equivalence relations:

• ≡p on Z, where x≡p y iff x− y is a multiple of p.

Proof. We show that ≡p is reflexive, symmetric, and transitive. Suppose that n ∈ Z. Then

n−n = 0 = 0 · p

so n≡p n. Thus, ≡p is reflexive.

Suppose that n,m∈Z. We prove that if n≡p m then m≡p n. Assume n≡p m. By the definition
of ≡p, there exists k ∈ Z such that

n−m = kp.

Thus, by algebra,
m−n = (−k)p

Since −k ∈ Z, m≡p n. Thus, ≡p is symmetric.

Suppose that n,m, ` ∈ Z. We prove that if n≡p m and m≡p `, then n≡p `. Assume n≡p m and
m≡p `. By the definition of ≡p, there exists, x,y ∈ Z such that

n−m = xp and
m− ` = yp

Adding our two equations we obtain

n− `= (x+ y)p.

Since x+ y ∈ Z, we have n≡p ` and so ≡p is transitive. �

• ∼ on Z×N where (a,b)∼ (c,d) iff ad = bc.

Proof. We prove ∼ is reflexive, symmetric, and transitive. Let (a,b) ∈ Z×N. Then since
ab = ba, (a,b)∼ (a,b) so∼ is transitive. Suppose that (a,b)∼ (c,d). Then by definition of∼,
ad = bc. By the properties of multiplication, cb = da, so (c,d)∼ (a,b). Thus, ∼ is symmetric.
Finally, assume that (a,b)∼ (c,d) and (c,d)∼ (e, f ). By definition of∼, ad = bc and c f = ed.
Multiplying the first equation by f produes:

ad f = bc f .

Use the second equation to subsititue c f = ed:

ad f = bed.

Since d 6= 0, we can divide both sides by d to find a f = be. Thus, (a,b) ∼ (e, f ). Thus, ∼ is
transitive.

�

• ∼ on the vertex set of a graph G, where x∼ y iff there is a path from x to y in the graph.
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Proof. We prove∼ is reflexive, symmetric, and transitive. Suppose that x is a vertex of G. Then
(x) is a finite sequence whose initial term is x and whose final term is x and with the (vacuous)
property that each pair of adjacent vertices in the sequence are the endpoints of an edge in G.
Thus, (x) is a path from x to x and so ∼ is reflexive.

Suppose that x and y are vertices of G such that x∼ y. We show y∼ x. By definition of∼, there
is a path

x0,x1, . . . ,xn

from x = x0 to y = xn. By definition of path each pair xi, xi+1 of adjacent vertices are the
endpoints of an edge in G. For each i ∈ {0, . . . ,n}, let yi = xn−i. Then

y0,y1, . . . ,yn

is the sequence x0, . . . ,xn in reverse order. Thus, y0 = xn = y and yn = x0 = x. Also, if yi and yi+1
are adjacent vertices, then they equal xn−i−1 and xn−i respectively and so are adjacent vertices
in the path from x to y. Consequently, they are the endpoints of an edge in G. Thus, yi and yi+1
are endpoints of an edge in G. Thus, we have a path from y to x. Consequently, y∼ x.

Now suppose that x,y,z are vertices of G and that x∼ y and y∼ z. We show x∼ z. By definition
of ∼, there is a path

x0,x1, . . . ,xn

from x to y and also a path
y0, . . . ,ym

from y to z. Notice that xn = y = y0. We claim that the sequence

x0,x1, . . . ,xn,y1, . . . ,ym

is a path from x to z. Recall that x0 = x and ym = z. Any pair of adjacent vertices in the sequence
is either xi,xi+1 for i ∈ {0, . . . ,n−1} or yi,yi+1 for i ∈ {1, . . . ,m−1} or xn,y1. In the first two
cases, the adjacent vertices are endpoints of edges since they were in the paths from x to y and
from y to z. In the third case we have xn = y0 so xn and y1 are also the endpoints of an edge
in G. Consequently, there is a path from x to z. Thus, x ∼ z by definition of ∼ and so ∼ is
transitive. �

• Suppose that P is a partition of a non-empty set X . Define∼ on X by x∼ y iff there exists A∈ P
such that x,y are both elements of A.

Proof. We prove that ∼ is reflexive, symmetric and transitive. Let x ∈ X . By the covering
property of partitions, there exists A ∈ P such that x ∈ A. Thus, there exists A ∈ P such that
x ∈ A and x ∈ A. Consequently, x∼ x. Thus, ∼ is reflexive.

Now suppose that x,y ∈ X and that x ∼ y. By definition of ∼, there exists A ∈ P such that
x ∈ A and y ∈ A. By the definition of conjunction, y ∈ A and x ∈ A. Thus, y ∼ x. Thus, ∼ is
symmetric.

Assume that x,y,z ∈ X , that x ∼ y and that y ∼ x. Thus, there exists A ∈ P and B ∈ P so that
x,y ∈ A and y,z ∈ B by definition of ∼. Observe that y ∈ A∩B. Since A∩B 6=∅ we must have
A = B by the pairwise disjoint condition for partitions. Thus, x,z ∈ B = A. Therefore, x∼ z. So
∼ is transitive. �

(2) Suppose that ∼ is an equivalence relation on a non-empty set X . For each x ∈ X , let [x] be the
equivalence class of x. Then the following hold:
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(a) For all x ∈ X , x ∈ [x].
(b) For all x,y ∈ X , x∼ y iff [x] = [y].
(c) For all x,y ∈ X , [x]∩ [y] 6=∅ implies [x] = [y].

Proof. Assume that ∼ is an equivalence relation. Recall that [x] = {y ∈ X : x ∼ y}. Since ∼ is
reflexive, x∼ x. Thus, x ∈ [x].

Suppose that x ∼ y. We show that [x] ⊂ [y]. Let z ∈ [x]. Thus, x ∼ z by definition of equivalence
class. Since ∼ is symmetric, y∼ x. Since ∼ is transitive, y∼ z. Thus, z ∈ [y]. Since z was arbitrary,
[x]⊂ [y]. The same proof applied to the expression y∼ x (since∼ is symmetric) shows that [y]⊂ [x].
Thus, [x] = [y]. Thus, if x∼ y, then [x] = [y].

Now suppose that [x] = [y]. By the first, part y ∈ [y]. By the definition of set equality, y ∈ [x]. By
definition of equivalence class, x∼ y. Thus, [x] = [y] implies x∼ y.

Finally, suppose that x,y ∈ X and that [x]∩ [y] 6= ∅. We show [x] = [y]. Since [x]∩ [y] 6= ∅, there
exists z∈ [x]∩ [y]. By definition of intersection z∈ [x] and z∈ [y]. By definition of equivalence class,
x∼ z and y∼ z. By the second part, [x] = [z] and [y] = [z]. Thus, [x] = [y]. �

(3) If∼ is an equivalence relation on a non-empty set X , then the set of equivalence classes is a partition
of X .

Proof. From the theorem above, for every x ∈ X , x ∈ [x] so X/ ∼ satisfies the covering property.
If A ∈ X/ ∼ then by definition, there exists x ∈ X such that A = [x]. Since x ∈ [x], no element of
X/ ∼ is empty. If A,B ∈ X/ ∼ and A∩B 6= ∅, then A = B by the final conclusion of the previous
theorem. �

(4) If f : Z/≡p→ Z/≡p is defined by f ([x]) = [2x] then f is well-defined.

Proof. Suppose that [x] = [y]. By the Fundamental Properties of Equivalence Relations, x≡p y. By
the definition of ≡p, there exists k ∈ Z such that x = y+ pk. Then

2x = 2y+ p(2k).

Since 2k ∈Z, 2x≡p 2y. By the Fundamental Properties of Equivalence Relations, [2x] = [2y]. Thus,
f ([x]) = f ([y]) and f is well-defined. �

(5) Addition and multiplication in Z/≡p are well-defined.

Proof. We just prove that multiplication is well-defined. Suppose that [x] = [x′] and [y] = [y′]. We
need to show that [x][y] = [x′][y′].

Since [x] = [x′] by the Fundamental Properties of Equivalence Relations, x≡p x′. Likewise, y≡p y′.
By definition of ≡p, there exists k, ` ∈ Z so that

x = x′+ pk
y = y′+ p`.

Multiplying we get:
xy = x′y′+ p(`x′+ ky′+ pk`).

Thus, xy≡p x′y′ and so [x][y] = [xy] = [x′y′] = [x′][y′] as desired. �

(6) The compositions of injections/surjections/bijections is a an injection/surjection/bijection.
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Proof. Suppose that f : X → Y and g : Y → Z are functions.

Claim 1: If f and g are both injections, so is g◦ f .

Let a,b ∈ X and assume that g ◦ f (a) = g ◦ f (b). That is, g( f (a)) = g( f (b)). Since g is injective,
f (a) = f (b). Since f is injective, a = b. Thus, g◦ f is also injective.

Claim 2: If f and g are both surjections, so is g◦ f .

Let z ∈ Z. Since g is surjective, there exists y ∈ Y such that g(y) = z. Since f is surjective there
exists x ∈ X so that f (x) = y. Then

g◦ f (x) = g( f (x)) = g(y) = z.

Thus, g◦ f is surjective.

Claim 3: If f and g are bijections, so is g◦ f .

This follows immediately from Claims 1 and 2 and the definition of bijection. �

(7) A function f : X → Y is a bijection if and only if there is a function f−1 : Y → X such that f ◦
f−1(y) = y for all y ∈ Y and f−1 ◦ f (x) = x for all x ∈ X .

Proof. Suppose, first, that f : X → Y is a bijection. Define g : Y → X as follows. If f (x) = y,
let g(y) = x. We claim g is a function. Since f is surjective, for every y ∈ Y , there exists x ∈ X
with f (x) = y. Thus, g satisfies the domain condition. Suppose y1 = y2 and that f (x1) = y1 and
f (x2) = y2. Then f (x1) = f (x2), so since f is injective x1 = x2. Thus, g(y1) = x1 = x2 = g(y2), so
g satisfies the well-defined condition. We now claim that g is the inverse of f . Let x ∈ X and let
y = f (x). Then g◦ f (x) = g( f (x)) = g(y) = x. The first equality is the definition of composition, the
second is the definition of y, and the third is the definition of g. Similarly, suppose that y ∈Y and let
x = g(y). Then f ◦g(y) = f (g(y)) = f (x) = y, with the last equation coming from the definition of
g and x.

Finally note that g◦ f : X → X by the definition of function composition, so it has the same domain
and codomain as the identity function on X . Since it takes the same value on each element of X as
does the identity function, it is equal to the identity function. Likewise f ◦g : Y → Y is equal to the
identity function on Y .

Thus, g is the inverse function to f ; traditionally denoted f−1.

�

4



(8) The set of bijections from a set X to itself is a group, with function composition as the operation.

Proof. Let G be the set of bijections from X to itself with function composition as the operation.
We just proved above that if f and g are bijections, so is g◦ f . Thus, G satisfies (G1). Set 1= idX .
Observe it is a bijection since it is it’s own inverse function. If f : X → Y is a bijection, then

f : 1(x) = f : idX(x) = f (idX(x)) = f (x)

and
1 : f (x) = idX : f (x) = idX( f (x)) = f (x)

for all x ∈ X , by definition of idX and function composition. Thus, the functions f and f ◦1 and
1◦ f are all equal. Thus, 1 is a group identity element for G.

We proved above that if f ∈ G, then f has an inverse function f−1. Since f = ( f−1)−1, f−1 has an
inverse and is also a bijection. Hence, f−1 ∈G. Also, by definition, f : f−1 = idX = f−1 : f and so
since 1= idX , we have that f−1 is the group inverse for f .

Finally, it was proved in class that function composition is associative. Thus G is a group.

�

(9) The function f : Z/≡10→ Z/≡10 defined by f ([x]) = [2x] is not injective or surjective.

Proof. Observe that f ([0]) = [2 ·0] = [0] and f ([5]) = [2 ·5] = [10] = [0]. Since [0] 6= [5] in Z/≡10,
f is not injective.

The function f is not surjective, for [1] 6∈ range f . To see this, suppose (for a contradiction) that
f ([x]) = [1] for some [x] ∈ Z/≡10. Then

[2x] = [1].

By the fundamental properties of equivalence relations and the definition of ≡10, there exists k ∈ Z
so that

2x = 1+10k.
Thus,

1 = 2(5k−1).
But 1 is not an even integer, and so we have a contradiction. �

(10) The function f : Z/≡10→ Z/≡10 defined by f ([x]) = [3x] is injective and surjective.

Proof. Suppose that f ([a]) = f ([b]). By definition of f ,

[3a] = [3b].

By the fundamental properties of equivalence relations and the definition of ≡10,

3a = 3b+10k

for some k ∈ Z. Consequently,
3(a−b−3k) = k

Set m = (a−b−3k), so k = 3m. Thus,

3(a−b) = 30m.

We see that
(a−b) = 10m.

Thus, a≡10 b and so [a] = [b]. Thus, f is injective.
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To see that f : Z/≡10→ Z/≡10 is surjective, let [y] ∈ Z/≡10. We must find an [x] ∈ Z/≡10 so that

[3x] = [y].

We could do this by just computing f ([x]) for every [x] ∈ Z/≡10 and seeing that there will be an [x]
such that f ([x]) = [y] for every [y]. For fun, we take a slightly different approach.

Observe first that if [a], [b] ∈ Z/≡10 then

f ([a]+ [b]) = f ([a+b]) = [3(a+b)] = [3a]+ [3b] = f ([a])+ f ([b]).

Thus, if [w], [y] ∈ range f , then there exist [a], [b] ∈ Z/≡10 so that f ([a]) = [w] and f ([b]) = [y]. In
which case,

f ([a]+ [b]) = f ([a])+ f ([b]) = [w]+ [y],
so [w]+ [y] ∈ Z/≡10.

Now notice that f ([7]) = [21] = [1]. Now suppose that [y] ∈ Z/≡10. Without loss of generality, we
may assume that y≥ 0 (otherwise replace y with y+10|y|). Then

[y] = [1]+ · · ·+[1]︸ ︷︷ ︸
y times

.

By our previous remarks, this means that

[y] = f
(
[7]+ · · ·+[7]︸ ︷︷ ︸

y times

)
Thus, f is surjective. �

(11) Define ∼ on Z×N by declaring (x,y)∼ (a,b) if and only if xb = ya. Prove the following:

(a) ∼ is an equivalence relation

Proof. This was done above. �

(b) If we define [(a,b)]+ [(c,d)] to be [(ad +bc,bd)] then addition on Z×N/∼ is well-defined.

Proof. Suppose that [(a,b)] = [(a′,b′)] and [(c,d)] = [(c′,d′)]. We show that [(a,b)]+[(c,d)] =
[(a′,b′)]+ [(c′,d′)]. By definition of equivalence class, (a,b)∼ (a′,b′) and (c,d) = (c′,d′). By
definition of the equivalence relation:

ab′ = a′b
cd′ = c′d

We want to show that [(ad +bc,bd)] = [(a′d′+b′c′,b′d′)]. This is equivalent to showing:

(ad +bc,bd)∼ (a′d′+b′c′,b′d′)

To show that, by the definition of ∼ it suffices to show:

(ad +bc)b′d′ = (a′d′+b′c′)bd.

We now do that, using the two equations above.

(ad +bc)b′d′ = adb′d′+bcb′d′

= (ab′)dd′+(cd′)bb′

= a′bdd′+ c′dbb′

= (a′d′+b′c′)bd

which is what we want. �
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(c) If we define [(a,b)] · [(c,d)] to be [(ac,bd)] then multiplication on Z×N/∼ is well-defined.

Proof. Suppose that [(a,b)] = [(a′,b′)] and [(c,d)] = [(c′,d′)]. We show that [(a,b)] · [(c,d)] =
[(a′,b′)] · [(c′,d′)]. By definition of equivalence class, (a,b) ∼ (a′,b′) and (c,d) = (c′,d′). By
definition of the equivalence relation:

ab′ = a′b
cd′ = c′d

Multiplying the first equation by cd′:

ab′cd′ = a′bcd′

Substitute on the right hand side using the second equation:

ab′cd′ = a′bc′d

Thus,
(ac)(b′d′) = (bd)(a′c′).

By the definition of ∼:
(ac,bd)∼ (a′c′,b′d′).

Hence,

[(a,b)] · [(c,d)] = [(ac,bd)] = [(a′c′,b′d′)] = [(a′,b′)] · [(c′,d′)]

by the definition of multiplication. �

(12) If T : R→R is a function such that T (0) = 0, T (1) = 1, and |T (x)−T (y)|= |x−y| for all x,y ∈R,
then T = id |R.

Proof. Let T be as in the hypothesis of the statement. Note that by definition the function id |R has
R as its domain and codomain, so T and id |R have the same domain and codomain. Let x ∈ R be
arbitrary. We show that T (x) = x. Since idR(x) = x, by definition, this will show that T = id |R.

Since T is distance-preserving: |T (x)−T (0)|= |x−0|= |x|. Since T (0) = 0, this means |T (x)|=
|x|. Thus, T (x) =±x. If T (x) = x, we are done, so suppose that T (x) =−x. Likewise,

|− x−1|= |T (x)−1|= |T (x)−T (1)|= |x−1|

Thus,−x−1=±(x−1). If we use the minus sign on the right, then−1=+1, a contradiction. Thus,
we must use the plus sign. That is, −x−1 = x−1. Thus, x = 0. Since T (0) = 0 by assumption, we
have T (x) = x, even in this case. Thus, T (x) = x, no matter what x ∈ R is. �

(13) Let X be a nonempty set and let D be the set of all metrics on X . For d,d′ ∈D define d ∼ d′ if and
only if there exists K ≥ 1, and C ≥ 0 such that

1
K

d(x,y)−C ≤ d′(x,y)≤ Kd(x,y)+C

for all x,y ∈ X . Prove that ∼ is an equivalence relation.

Proof. We show that ∼ is reflexive, symmetric, and transitive. For simplicity, in what follows we
use function notation and write d rather than constantly writing things like d(x,y) for all x,y ∈ X .

Let d ∈D . Choosing K = 1 and C = 0, we see that d ∼ d.
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Suppose d,d′ ∈D and d ∼ d′. By definition of ∼, there exist K ≥ 1 and C ≥ 0 with

1
K

d−C ≤ d′ ≤ Kd +C

That is,
d′ ≤ Kd +C
d′ ≥ 1

K d−C

Solving the two inequalities for d produces
1
K d′− C

K ≤ d
Kd′+CK ≥ d

Observe that −CK ≤−C
K , since C ≥ 0and K ≥ 1. Thus, we also have

1
K

d′−CK ≤ d.

Thus,
1
K

d′−CK ≤ d ≤ Kd′+CK

Setting C′ =CK, we have shown that there exist C′ ≥ 0 and K ≥ 1 so that

1
K

d′−C′ ≤ d ≤ Kd′+C′.

Thus, d′ ∼ d.

Now suppose that d1,d2,d3 ∈D so that d1 ∼ d2 and d2 ∼ d3. Then by definition there exist J,K ≥ 1
and C,D≥ 0 so that

d2 ≤ Jd1 +C
d3 ≤ Kd2 +D
d2 ≥ 1

J d1−C
d3 ≥ 1

K d2−D

Substituting the first inequality into the second and the third into the fourth (using the fact that K ≥ 0
and d1 ≥ 0) we obtain:

d3 ≤ KJd1 +KC+D
d3 ≥ 1

KJ d2− C
K −D.

Let K′ = KJ and observe that K′ ≥ 1 since K,J ≥ 1. Let C′ = KC+D. Notice that since K ≥ 1, we
have C′ ≥ C

K −D. Thus,
1
K′

d1−C′ ≤ d3 ≤ K′d1 +C′.

Thus, d1 ∼ d3, as desired. So ∼ is also transitive. �

(14) (CHALLENGE) Consider the equivalence relation ∼ on D in the previous problem. Recall that if
d and d′ are metrics on X , then we can define d +d′ by

(d +d′)(x,y) = d(x,y)+d′(x,y)

for all x,y ∈ X and that d +d′ is a metric on X . Define + on D/∼ by

[d]+ [d′] = [d +d′]

for all d,d′ ∈D . Prove that + is well-defined on D/∼.
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(15) Let X be a set and let F = { f : X → R} be the set of all functions from X to R. Recall that
for f ,g ∈ F , the functions f + g and f · g are defined by letting ( f + g)(x) = f (x) + g(x) and
f · g(x) = f (x)g(x) for all x ∈ X . Define ∼ on F by declaring f ∼ f ′ if and only if there exists
M ≥ 0 such that | f (x)− f ′(x)| ≤M for all x ∈ X .

(a) Prove that ∼ is an equivalence relation on F .
(b) Define + and · on F/∼ by [ f ]+[g] = [ f +g] and [ f ] · [g] = [ f ·g]. Prove that + is well-defined

and · is not.

Proof. We show that ∼ is reflexive, symmetric, and transitive. It is reflexive, because | f (x)−
f (x)| = 0 ≤ 1, for all x ∈ X . Thus, f ∼ f . It is reflexive, because if f ∼ g, then for all x ∈ X ,
| f (x)−g(x)| ≤M. Thus, |g(x)− f (x)|= | f (x)−g(x)| ≤M for all x∈ X . Thus, g∼ f . Suppose
that f ∼ g and g∼ h. By definition of ∼, there exist M1,M2 ≥ 0 such that

| f (x)−g(x)| ≤ M1 and
|g(x)−h(x)| ≤M2

for all x ∈ R. Then adding our two equations:

M1 +M2 ≥ | f (x)−g(x)|+ |g(x)−h(x)| ≥ | f (x)−g(x)+g(x)−h(x)|= | f (x)−h(x)|
for all x ∈ R. (The second inequality comes from the triangle inequality for absolute value.)
Thus, f ∼ h as desired.
Suppose that [ f ] = [ f ′] and [g] = [g′]. We show [ f ]+ [g] = [ f ′]+ [g′]. Since [ f ] = [ f ′], f ∼ f ′.
Thus, there exists M1 ≥ 0 such that | f (x)− f ′(x)| ≤M1 for every x ∈ R. Similarly, there exists
M2 ≥ 0 such that |g(x)− g′(x)| ≤M2. Using the same trick as in our proof of transitivity, we
add the inequalities:

M1 +M2 ≥ | f (x)− f ′(x)|+ |g(x)−g′(x)| ≥ | f (x)− f ′(x)+g(x)−g′(x)|= |( f (x)+g(x))− ( f ′(x)−g′(x))|
for all x ∈ R. Thus, ( f + g) ∼ ( f ′+ g′). Consequently, [ f + g] = [ f ′+ g′] and so [ f ] + [g] =
[ f ′]+ [g′] as in the definition of addition for equivalence classes.
To see that multiplication is not well-defined, for all x ∈ R, let f (x) = ex and f ′(x) = ex + 5.
Let g(x) = x and g′(x) = x+3. Note that f ∼ f ′ and g∼ g′. However, for all x ∈ R:

| f (x)g(x)− f ′(x)g′(x)| = |xex− (x+3)(ex +5)|
= |xex− xex−3ex−5x−15|
= |3ex +5x+15|

Since lim
x→∞

3ex + 5x+ 15 = ∞, the difference of the products is not bounded. Thus, f g 6∼ f ′g′

and so multiplication is not well-defined on equivalence classes.
�

(16) Suppose that f : A→ B, g : B→C, and h : C→ D are functions. Prove

h◦ (g◦ f ) = (h◦g)◦ f

(17) There is a bijection from the interval (−10,10) to the interval (1,2).

Proof. Let f (x) = 1
20(x− 1) + 2 for all x ∈ (−10,10). Observe that f : (−10,10)→ (1,2) is a

function with inverse
f−1(y) = 20(y−2)+1

for all y ∈ (1,2). Since f has an inverse function it is a bijection. �

(18) Suppose that G is a group with operation ◦ and that H is a subgroup. For a,b ∈ G define a ∼ b if
and only if a◦b−1 ∈ H. Prove that ∼ is an equivalence relation on G.
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Proof. The axioms of a group would be given to you for this problem. Let G be a group and H ⊂G a
subgroup. Define a∼ b if and only if a◦b−1 ∈H. We show∼ is reflexive, symmetric, and transitive.

Since a◦a−1 = 1 and since 1 ∈ H as it is a group, a∼ a. Thus ∼ is reflexive.

Suppose that a ∼ b. By definition a ◦ b−1 ∈ H. Since H is a subgroup (a ◦ b−1)−1 ∈ H. But
(a◦b−1)−1 = b◦a−1 as

(a◦b−1)◦ (b◦a−1) = a◦ (b◦b−1)◦a−1 = 1
and

(b◦a−1)◦ (a◦b−1) = b◦ (a−1 ◦a)◦b−1 = 1
by associativity and the definition of inverses. Thus, b◦a−1 ∈ H, so b∼ a. Thus, ∼ is symmetric.

Finally, suppose that a ∼ b and b ∼ c. Then a ◦ b−1 ∈ H and b ◦ c−1 ∈ H. Since H satisfies the
closure axiom

(a◦b−1)◦ (b◦ c−1) ∈ H
However,

(a◦b−1)◦ (b◦ c−1) = a◦ c−1

by associativity, the definition of inverse, and the properties of the identity element. Thus, a◦ c−1 ∈
H so a∼ c. Thus, ∼ is transitive. �

(19) Suppose that f : A→ B, g : B→C, and h : C→ D are functions. Prove

h◦ (g◦ f ) = (h◦g)◦ f

Proof. Recall that by the definition of function composition, g◦ f : A→C and h◦g : B→D. Thus,

h◦ (g◦ f ) : A→ D

and
(h◦g)◦ f : A→ D

by the definition of function composition. Consequently, h ◦ (g ◦ f ) and (h ◦ g) ◦ f have the same
domain and codomain.

Now for any x ∈ A, we have:

h◦ (g◦ f )(x) = h(g◦ f (x)) = h(g( f (x)))

and
(h◦g)◦ f (x) = h◦g( f (x)) = h(g( f (x)).

Thus,
h◦ (g◦ f )(x) = (h◦g)◦ f (x)

for every x ∈ A. Thus, as h◦ (g◦ f ) and (h◦g)◦ f have the same domain and codomain and produce
the same output for an input, they are equal functions. �

(20) Use induction to prove that for all n ∈ N∗ there exists m ∈ N∗ such that n = 3m or n = 3m+ 1 or
n = 3m+2.

Proof. We induct on n. The base case is n= 0 for which observe that 0= 3 ·0, so the statement holds
with m = 0. Now suppose that there exists a k ∈ N∗ such that there is an m ∈ N∗ with k = 3m+ r
for some r ∈ {0,1,2}. If r 6= 2, then r+1 ∈ {1,2} and we have k+1 = 3m+1 or k+1 = 3m+2,
as desired. If r = 2, then k+1 = 3m+2+1 = 3(m+1) and the result again holds as m+1 ∈ N∗.
Thus by induction the result holds for all n ∈ N∗. �
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(21) Use induction to prove that every convex polygon with n sides can be divided into (n−2) triangles
using only edges with endpoints on the corners of the polygon.

Proof. We induct on n≥ 3. When n = 3, the polygon is a triangle and it is automatically tiled with
(n−3) = 1 triangles as required. Suppose that there is a k ≥ 3 such that every convex polygon with
k sides can be tiled with k− 2 triangles using edges that have their endpoints on the corner of the
polygon. Let P be a convex polygon with k+1 sides. There are corners v1,v2,v3 such that v1 6= v3
and v1 and v2 are the endpoints of a side of P as are v2 and v3. Let e be the line segment in R2

joining v1 to v3. Since k+1 = 4, this line segment divides P into two polygons A and B, with one of
them (say B) being a triangle and the other (A) having k sides (one of which is e). By our induction
hypothesis, A can be tiled with (k−2) triangles, each with their edges on the corners of A. Since B
is a triangle, those triangles together with B tile P and the edges of the triangles have their endpoints
on the corners of P. By induction, every polygon with n ≥ 3 sides can be subdivided into (n− 2)
triangles using only edges with endpoints on the corners. �

(22) Let x0 =
√

2 and define xn+1 =
√

2+ xn for all n ∈ N∗. Prove that for all n ∈ N∗, xn+1 > xn.

Proof. We induct on n. For n = 0, x1 =
√

2+
√

2 ≥
√

2 = x0. Suppose there is a k ∈ N∗ such that
xk+1 > xk. Then observe that:

x2
(k+1)+1 = (

√
2+ xk+1)

2 = 2+ xk+1 ≥ 2+ xk

where the inequality arises from the inductive hypothesis. Taking the square root of both sides:

x(k+1)+1 ≥
√

2+ xk = xk+1.

Thus, by induction, xn+1 ≥ xn for all n ∈ N∗.

�

(23) Give a thorough outline of a proof that if f is a permutation of a set X with n≥ 2 elements, then f
is the composition of transpositions. (A transposition is a permutation such that there exists distinct
a,b such that f (a) = b and f (b) = f (a) and f (x) = x for all x 6= a,b.)

Proof. We induct on the number n of elements of X . If n = 2, then X = {a,b} with a 6= b. A
bijection f : {a,b} is either a transposition or the identity. The result holds automatically if f is a
transposition. If it is the identity, observe it is the composition of the transposition interchanging a
and b with itself.

Suppose that for some k ≥ 2, every permutation of a set with k elements is the composition of
permutations. Let f : X → X be a permutation of a set X having k+ 1 elements. Let x0 ∈ X . If
f (x0) = x0, then g : X \{x0}→ X \{x0} defined by g(x0) = x0 is the composition of transpositions.
Extending those transpositions to have domain and codomain equal to X , we see that f is also a
composition of transpositions.

Suppose, therefore, that f (x0) 6= x0. Let τ : X → X be the transposition such that τ(x0) = f (x0)
and τ( f (x0)) = x0. Then τ ◦ f (x0) = x0. Consequently, by the previous paragraph, there exist
transpositions τ1, . . . ,τm such that

τ ◦ f = τ1 ◦ τ2 ◦ · · · ◦ τm.

Noting that τ ◦ τ is the identity, we have:

f = τ ◦ τ ◦ f = τ ◦ τ1 ◦ τ2 ◦ · · · ◦ τm.
11



Thus, f is also a composition of transpositions. �

(24) (CHALLENGE) Let X be the set of all real-valued functions on the vertices V of a graph G having
directed edges and let Y be the set of all real valued functions on the edges E of G. If e is a
directed edge of G, let e− be the tail of e and e+ be the head of e. Define ∇ : X → Y by declaring
∇( f ) : E→ R to be the function defined by ∇( f )(e) = f (e+)− f (e−) for all e ∈ E. Prove that ∇ is
surjective if and only if G has no cycles.

Proof. (sketch)

Suppose first that ∇ is surjective. We prove that G has no cycles by contradiction. Suppose that
v0,v1,v2, . . . ,vn are the vertices of a cycle (n≥ 1). That is for each i ∈ {0, . . . ,n−1} there is an edge
Ei pointing from vi to vi+1 and there is also an edge En pointing from vn to v0. Let g ∈ Y be the
function such that g(E0) = 1 and g(e) = 0 for every edge of G other than E0. Suppose that there
exists f ∈ X such that ∇ f = g. Suppose also that f (v0) = c ∈R. Then 1 = ∇g(E0) = f (v1)− f (v0).
Thus, f (v1) = 1+ c. By induction, f (vn) = n+ c. However, then

0 = ∇g(En) = f (v0)− f (vn) = c− (n+ c) =−n.

This contradicts the fact that n≥ 1.

Suppose now that G has no cycles. We prove that ∇ is surjective. Let g ∈ Y . Without loss of
generality, assume G is connected (otherwise, repeat the following argument in each component.)
Let v0 be a vertex of G. Since G has no cycles, for each vertex v ∈ G, there is a unique path from
v0 to v. Let e0,e1, . . . ,em be the edges of that path. (The path may travel backwards along some
edges.) Let v1,v2, . . . ,vm+1 = v be the vertices of the path so that vi and vi+1 are the endpoints of ei.
Let f (v) =±g(e0)±g(e1)±·· ·±g(em), where each sign is determined by whether the path travels
in the same direction as ei (in which case, use +) or in the opposite direction (in which case use −).
For an edge e in the path, the value of ∇( f ) is the difference of the values of f on the endpoints. It
follows that it is equal to g. (more details needed) �

(25) (Bonus solution) There is a bijection from the interval [0,1] to the interval (0,1).

Proof. For all n ∈ N, let sn = 1
2 +

1
2n . Observe that if sn = sm then n = m. For all n ∈ N, let

tn = 1
2 −

1
2n . Again notice that if tn = tm then n = m. Also, there does not exist n,m ∈ N such that

sn = tm. Consequently, we have a function f : [0,1]→ [0,1] defined by

f (x) =


sn+1 if there exists n ∈ N with x = sn

tm+1 if there exists m ∈ N with x = tm
x otherwise

Furthermore, since s1 = 1 and t1 = 0, neither 0 or 1 are in the range of f and that range f = (0,1).
Restricting the codomain of f to (0,1), we have a function f : [0,1] → (0,1). It has inverse
f−1 : (0,1)→ [0,1] given by

f−1(x) =


sn−1 if there exists n ∈ N with x = sn and n≥ 2
tm−1 if there exists m ∈ N with x = tm and m≥ 2
x otherwise .

Thus, since f has an inverse it is a bijection. �

(26) (Bonus solution) Suppose that a,b ∈ N. Show there exist q,r ∈ N∗ such that b = aq+ r and r < 0.
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Proof. We induct on b, so consider a ∈ N to be fixed.

Base Case: b = 1.

If a = 1, then b = a(b)+ 0, so letting q = b and r = 0, we have the desired result. If a > 1, then
b = a(0)+1 and letting q = 0 and r = 1 < a concludes the base case.

Inductive Step: Assume that there is a k ∈N such that there are q,r ∈N∗ with k = aq+r and r < k.
We prove that there exist q′,r′ ∈ N∗ with k+ 1 = aq′+ r′ and r′ < a. We split the proof into two
cases: r < a−1 and r = a−1.

Case 1: r < a−1.

Let q′ = q and r′ = r + 1. Then k+ 1 = (aq+ r)+ 1 = aq+(r + 1) = aq′+ r′. Since r < a− 1,
r′ < a.

Case 2: r = a−1.

Let q′ = q+ 1 and r′ = 0. For then k+ 1 = (aq+ r)+ 1 = aq+(a− 1)+ 1 = a(q+ 1) = aq′+ r′.
Since r′ < a, we have the desired result.

�
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