MA 274: Exam 2 Study Guide Partial Solutions l

(1) The following are examples of equivalence relations:

e =, on Z, where x =), y iff x —y is a multiple of p.

Proof. We show that =, is reflexive, symmetric, and transitive. Suppose that n € Z. Then
n—n=0=0-p
son =, n. Thus, =, is reflexive.

Suppose that n,m € Z. We prove that if n =, m then m =, n. Assume n =, m. By the definition
of =, there exists k € Z such that

n—m=kp.
Thus, by algebra,
m—n=(—k)p
Since —k € Z, m =, n. Thus, =, is symmetric.

Suppose that n,m, £ € Z. We prove thatif n =, m and m =, £, then n =, {. Assume n =, m and
m =, (. By the definition of =, there exists, x,y € Z such that

n—m = xpand
m—+{ = yp

Adding our two equations we obtain
n—~0=(x+y)p.

Since x+y € Z, we have n =, £ and so =, is transitive. ([l
~ on Z x N where (a,b) ~ (c,d) iff ad = bc.

Proof. We prove ~ is reflexive, symmetric, and transitive. Let (a,b) € Z x N. Then since
ab = ba, (a,b) ~ (a,b) so ~ is transitive. Suppose that (a,b) ~ (c,d). Then by definition of ~,
ad = bc. By the properties of multiplication, cb = da, so (c,d) ~ (a,b). Thus, ~ is symmetric.
Finally, assume that (a,b) ~ (c,d) and (c,d) ~ (e, f). By definition of ~, ad = bc and ¢ f = ed.
Multiplying the first equation by f produes:

adf =bcf.
Use the second equation to subsititue cf = ed:
adf = bed.

Since d # 0, we can divide both sides by d to find af = be. Thus, (a,b) ~ (e, f). Thus, ~ is
transitive.

O

e ~ on the vertex set of a graph G, where x ~ y iff there is a path from x to y in the graph.

1



Proof. We prove ~ is reflexive, symmetric, and transitive. Suppose that x is a vertex of G. Then
(x) is a finite sequence whose initial term is x and whose final term is x and with the (vacuous)
property that each pair of adjacent vertices in the sequence are the endpoints of an edge in G.
Thus, (x) is a path from x to x and so ~ is reflexive.

Suppose that x and y are vertices of G such that x ~y. We show y ~ x. By definition of ~, there
is a path
X0, X155 Xn

from x = xg to y = x,,. By definition of path each pair x;, x;1; of adjacent vertices are the
endpoints of an edge in G. For each i € {0,...,n}, let y; = x,,_;. Then

Y0,Y15---5Vn
is the sequence xy, . . ., x, in reverse order. Thus, yg =x, =y and y, = xp = x. Also, if y; and y; 1
are adjacent vertices, then they equal x,,_;_; and x,_; respectively and so are adjacent vertices

in the path from x to y. Consequently, they are the endpoints of an edge in G. Thus, y; and y;;
are endpoints of an edge in G. Thus, we have a path from y to x. Consequently, y ~ x.

Now suppose that x, y, z are vertices of G and that x ~ y and y ~ z. We show x ~ z. By definition
of ~, there is a path

X0y X1ye--yXn
from x to y and also a path

Y055 Ym
from y to z. Notice that x,, = y = yg. We claim that the sequence

X0s X1y -5 Xns Y15+ -5 Ym

is a path from x to z. Recall that xo = x and y,, = z. Any pair of adjacent vertices in the sequence
is either x;,x; 41 fori € {0,...,n— 1} or y;,yi+1 fori € {1,...,m— 1} or x,,y;. In the first two
cases, the adjacent vertices are endpoints of edges since they were in the paths from x to y and
from y to z. In the third case we have x, = yg so x, and y; are also the endpoints of an edge
in G. Consequently, there is a path from x to z. Thus, x ~ z by definition of ~ and so ~ is
transitive. O

e Suppose that P is a partition of a non-empty set X. Define ~ on X by x ~ y iff there exists A € P
such that x,y are both elements of A.

Proof. We prove that ~ is reflexive, symmetric and transitive. Let x € X. By the covering
property of partitions, there exists A € P such that x € A. Thus, there exists A € P such that
x € A and x € A. Consequently, x ~ x. Thus, ~ is reflexive.

Now suppose that x,y € X and that x ~ y. By definition of ~, there exists A € P such that
x € A and y € A. By the definition of conjunction, y € A and x € A. Thus, y ~ x. Thus, ~ is
symmetric.

Assume that x,y,z € X, that x ~ y and that y ~ x. Thus, there exists A € P and B € P so that
X,y € A and y, z € B by definition of ~. Observe that y € AN B. Since AN B # & we must have
A = B by the pairwise disjoint condition for partitions. Thus, x,z € B = A. Therefore, x ~ z. So
~ is transitive. O

(2) Suppose that ~ is an equivalence relation on a non-empty set X. For each x € X, let [x] be the
equivalence class of x. Then the following hold:
2



3)

“4)

)

(6)

(a) Forallx € X, x € [x].
(b) Forall x,y € X, x ~ yiff [x] = [y].
(c) Forall x,y € X, [x]N[y] # @ implies [x] = [y].

Proof. Assume that ~ is an equivalence relation. Recall that [x] = {y € X : x ~ y}. Since ~ is
reflexive, x ~ x. Thus, x € [x].

Suppose that x ~y. We show that [x] C [y]. Let z € [x]. Thus, x ~ z by definition of equivalence
class. Since ~ is symmetric, y ~ x. Since ~ is transitive, y ~ z. Thus, z € [y|. Since z was arbitrary,
[x] C [y]. The same proof applied to the expression y ~ x (since ~ is symmetric) shows that [y] C [x].
Thus, [x] = [y]. Thus, if x ~y, then [x] = [y].

Now suppose that [x] = [y]. By the first, part y € [y]. By the definition of set equality, y € [x]. By
definition of equivalence class, x ~ y. Thus, [x] = [y] implies x ~ y.

Finally, suppose that x,y € X and that [x] N [y] # &. We show [x] = [y]. Since [x] N [y] # &, there
exists z € [x] N [y]. By definition of intersection z € [x] and z € [y]. By definition of equivalence class,
x ~ z and y ~ z. By the second part, [x] = [z] and [y] = [z]. Thus, [x] = [y]. O

If ~ is an equivalence relation on a non-empty set X, then the set of equivalence classes is a partition
of X.

Proof. From the theorem above, for every x € X, x € [x] so X/ ~ satisfies the covering property.
If A € X/ ~ then by definition, there exists x € X such that A = [x]. Since x € [x], no element of
X/ ~is empty. If A,B€ X/~ and ANB # &, then A = B by the final conclusion of the previous
theorem. U

If f: Z) =,— 7/ =p is defined by f([x]) = [2x] then f is well-defined.
Proof. Suppose that [x] = [y]. By the Fundamental Properties of Equivalence Relations, x =, y. By
the definition of =, there exists k € Z such that x = y + pk. Then

2x =2y+ p(2k).
Since 2k € Z, 2x =, 2y. By the Fundamental Properties of Equivalence Relations, [2x] = [2y]. Thus,
f([x]) = f([y]) and f is well-defined. O
Addition and multiplication in Z/ =, are well-defined.
Proof. We just prove that multiplication is well-defined. Suppose that [x] = [x'] and [y] = [y/]. We
need to show that [x][y] = [¥][/].

Since [x] = [x] by the Fundamental Properties of Equivalence Relations, x =, x’. Likewise, y =, y'.
By definition of =, there exists k,/ € Z so that

x = X +pk
y = y+pt
Multiplying we get:
xy =Xy + p(x' +ky' + pkl).
Thus, xy =, x’y’ and so [x|[y] = [xy] = [x'y] = [¥][/] as desired. O

The compositions of injections/surjections/bijections is a an injection/surjection/bijection.
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Proof. Suppose that f: X — Y and g: Y — Z are functions.
Claim 1: If f and g are both injections, so is go f.

Let a,b € X and assume that go f(a) = go f(b). Thatis, g(f(a)) = g(f(b)). Since g is injective,
f(a) = f(b). Since f is injective, a = b. Thus, go f is also injective.

Claim 2: If f and g are both surjections, so is go f.

Let z € Z. Since g is surjective, there exists y € Y such that g(y) = z. Since f is surjective there
exists x € X so that f(x) =y. Then

gof(x)=g(f(x) =20) =z

Thus, go f is surjective.
Claim 3: If f and g are bijections, so is go f.

This follows immediately from Claims 1 and 2 and the definition of bijection. O

A function f: X — Y is a bijection if and only if there is a function f~': ¥ — X such that fo
f'(y)=yforallye Y and f'o f(x)=xforallx € X.

Proof. Suppose, first, that f: X — Y is a bijection. Define g: ¥ — X as follows. If f(x) =y,
let g(y) = x. We claim g is a function. Since f is surjective, for every y € Y, there exists x € X
with f(x) = y. Thus, g satisfies the domain condition. Suppose y; = y, and that f(x;) = y; and
f(x2) =y2. Then f(x1) = f(x2), so since f is injective x; = x5. Thus, g(y;) = x; = x2 = g(y2), so
g satisfies the well-defined condition. We now claim that g is the inverse of f. Let x € X and let
y=f(x). Then go f(x) = g(f(x)) = g(y) = x. The first equality is the definition of composition, the
second is the definition of y, and the third is the definition of g. Similarly, suppose that y € Y and let
x=g(y). Then fog(y) = f(g(y)) = f(x) =y, with the last equation coming from the definition of
g and x.

Finally note that go f: X — X by the definition of function composition, so it has the same domain
and codomain as the identity function on X. Since it takes the same value on each element of X as
does the identity function, it is equal to the identity function. Likewise fog: ¥ — Y is equal to the
identity function on Y.

Thus, g is the inverse function to f; traditionally denoted f~!.



®)

©)

(10)

The set of bijections from a set X to itself is a group, with function composition as the operation.

Proof. Let G be the set of bijections from X to itself with function composition as the operation.
We just proved above that if f and g are bijections, so is go f. Thus, G satisfies (G1). Set ¥ = idy.
Observe it is a bijection since it is it’s own inverse function. If f: X — Y is a bijection, then

[ @) = [ idy(x) = f(idx (x)) = f(x)
and

Wi fx) =idy: f(x) =idx(f(x)) = f(x)
for all x € X, by definition of idy and function composition. Thus, the functions f and f ol and
J¥o f are all equal. Thus, ¥ is a group identity element for G.

We proved above that if f € G, then f has an inverse function f~!. Since f = (f~!)~!, f~! has an
inverse and is also a bijection. Hence, f~! € G. Also, by definition, f: f~! =idy = f~': fand so
since ¥ = idy, we have that f~! is the group inverse for f.

Finally, it was proved in class that function composition is associative. Thus G is a group.

The function f: Z/ =19— Z/ =i¢ defined by f([x]) = [2x] is not injective or surjective.

ir.oof. Qb§erYe that £([0]) = [2-0] = [0] and f([5]) = [2-5] = [10] = [0]. Since [0] # [5] in Z/ =),
is not injective.

The function f is not surjective, for [1] & range f. To see this, suppose (for a contradiction) that
f([x]) = [1] for some [x] € Z/ =}o. Then
[2x] = [1].

By the fundamental properties of equivalence relations and the definition of =y, there exists k € Z
so that

2x =1+ 10k.
Thus,
1=2(5k—1).
But 1 is not an even integer, and so we have a contradiction. g

The function f: Z/ =10— Z/ =19 defined by f([x]) = [3x] is injective and surjective.

Proof. Suppose that f([a]) = f([b]). By definition of f,

[3a] = [3D].
By the fundamental properties of equivalence relations and the definition of =,
3a =3b+ 10k
for some k € Z. Consequently,
3(a—b—3k)=k
Set m = (a— b —3k), so k = 3m. Thus,
3(a—b) =30m.
We see that
(a—b) = 10m.

Thus, a =10 b and so [a] = [b]. Thus, f is injective.
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Tosee that f: Z/ =10— Z/ =10 is surjective, let [y] € Z/ =19. We must find an [x] € Z/ =0 so that

[3x] = [y
We could do this by just computing f([x]) for every [x] € Z/ =)o and seeing that there will be an [x]
such that f([x]) = [y] for every [y]. For fun, we take a slightly different approach.

Observe first that if [a], [b] € Z/ =)0 then

f(lal+[p]) = f(la+b]) = [3(a+b)] = [3a] + [3b] = f([a]) + £([))-

Thus, if [w],[y] € range f, then there exist [a], [b] € Z/ =)0 so that f([a]) = [w] and f([b]) = [y]. In
which case,

f(la]+[p]) = f(la]) + £ ([b]) = W] + Y],
so [w]+[y] € Z/ =1o.

Now notice that f([7]) = [21] = [1]. Now suppose that [y| € Z/ =;o. Without loss of generality, we
may assume that y > 0 (otherwise replace y with y+ 10|y|). Then

b = [1)+-+11].
—_—

y times

By our previous remarks, this means that

bl =r([+-+07])
y times

Thus, f is surjective. g

(11) Define ~ on Z x N by declaring (x,y) ~ (a,b) if and only if xb = ya. Prove the following:

(a) ~ is an equivalence relation
Proof. This was done above. O
(b) If we define [(a,b)] + [(c,d)] to be [(ad + bc,bd)] then addition on Z x N/ ~ is well-defined.

Proof. Suppose that [(a,b)] = [(d’,b")] and [(c,d)] = [(c’,d")]. We show that [(a, ]+ [(c,d)] =

[(d,b)]+[(c’,d")]. By definition of equivalence class, (a,b) ~ (a’,b’) and (¢,d) = (¢/,d"). By
definition of the equivalence relation:
ab' =d'b
cd =cd
We want to show that [(ad + bc,bd)] = [(d'd’ + b'c’,b'd")]. This is equivalent to showing:
(ad +bc,bd) ~ (d'd +b'c',b'd")
To show that, by the definition of ~ it suffices to show:
(ad+be)b'd = (dd +b'c')bd.
We now do that, using the two equations above.
(ad+bc)b'd = adb'd +bcb'd
= (ab')dd' + (cd')b/
= d'bdd +dbb
(d'd +b'c)bd
which is what we want. 0
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(c) If we define [(a,b)] - [(c,d)] to be [(ac,bd)] then multiplication on Z x N/ ~ is well-defined.

Proof. Suppose that [(a,b)] = [(d',b")] and [(c,d)] = [(¢,d’)]. We show that [(a,b)]-[(c,d)] =
[(d,b)]-[(c,d")]. By definition of equivalence class, (a,b) ~ (a',b') and (¢,d) = (¢/,d"). By
definition of the equivalence relation:

ab' =d'b

cd =cd

Multiplying the first equation by cd’:

ab'cd’ = d'bed’
Substitute on the right hand side using the second equation:

ab'cd' =d'bc'd
Thus,

(ac)(b'd") = (bd)(d ).
By the definition of ~:
(ac,bd) ~ (d'c',b'd").
Hence,
[(a,b)]- [(c,d)] = [(ac,bd)] = [(d'c,b'd')] = [(d',D)] - [(¢, )]

by the definition of multiplication. U

If T: R — Ris a function such that 7(0) =0, T(1) = 1, and |T (x) — T (y)| = [x—y| for all x,y € R,
then 7 = id |.

Proof. Let T be as in the hypothesis of the statement. Note that by definition the function id | has
R as its domain and codomain, so 7 and id|r have the same domain and codomain. Let x € R be
arbitrary. We show that T'(x) = x. Since idr(x) = x, by definition, this will show that 7 = id |.

Since T is distance-preserving: |T(x) — 7 (0)| = |x — 0| = |x|. Since T(0) = 0, this means |T (x)| =
|x|. Thus, T'(x) = £x. If T(x) = x, we are done, so suppose that 7'(x) = —x. Likewise,
|—x =1 =|T(x) = 1[=T() =T(1)] = |x— 1]

Thus, —x— 1 = 4(x—1). If we use the minus sign on the right, then —1 = +1, a contradiction. Thus,
we must use the plus sign. That is, —x — 1 = x— 1. Thus, x = 0. Since 7'(0) = 0 by assumption, we
have T'(x) = x, even in this case. Thus, T'(x) = x, no matter what x € R is. O

Let X be a nonempty set and let & be the set of all metrics on X. For d,d’ € & define d ~ d’ if and
only if there exists K > 1, and C > 0 such that

1
gd(x,y) —C <d'(x,y) <Kd(x,y)+C

for all x,y € X. Prove that ~ is an equivalence relation.

Proof. We show that ~ is reflexive, symmetric, and transitive. For simplicity, in what follows we
use function notation and write d rather than constantly writing things like d(x,y) for all x,y € X.

Letd € 2. Choosing K =1 and C =0, we see that d ~ d.
7



Suppose d,d’ € 9 and d ~ d'. By definition of ~, there exist K > 1 and C > 0 with

1
Ed—Cgngd+C

That is,
d < Kd+C
1
d > d-C
Solving the two inequalities for d produces

1
xd—% < d
Kd'+CK > d

Observe that —CK < —%, since C > 0Oand K > 1. Thus, we also have
1
—d —CK <d.
X <
Thus,
1
EJ—CKgdSKJ+CK
Setting C" = CK, we have shown that there exist C' > 0 and K > 1 so that
1
Ed’—c’ <d<Kd+C.
Thus, d' ~d.

Now suppose that dy,d,d3 € & so that d| ~ d» and dy ~ d3. Then by definition there exist J,K > 1
and C,D > 0 so that

d < Jdi+C
d3 < Kd,+D
d > tdi—C
dy > %dz —-D

Substituting the first inequality into the second and the third into the fourth (using the fact that K > 0
and d; > 0) we obtain:

dy < KJdi+KC+D
dy > &Hd—$-D.

Let K’ = KJ and observe that K’ > 1 since K,J > 1. Let C' = KC + D. Notice that since K > 1, we
have C' > % —D. Thus,

1
—d —C <d; < K’d] +C.
K/
Thus, dq ~ d3, as desired. So ~ is also transitive. O

(14) (CHALLENGE) Consider the equivalence relation ~ on & in the previous problem. Recall that if
d and d’ are metrics on X, then we can define d +d’ by

(d+d')(x,y) =d(x,y) +d'(x,y)
for all x,y € X and that d +d’ is a metric on X. Define + on 2/ ~ by
[d]+[d']=d+d']

for all d,d’ € 2. Prove that + is well-defined on 2/ ~.
8



(15) Let X be a set and let .# = {f: X — R} be the set of all functions from X to R. Recall that
for f,g € %, the functions f + g and f - g are defined by letting (f + g)(x) = f(x) + g(x) and
f-g(x) = f(x)g(x) for all x € X. Define ~ on .# by declaring f ~ f’ if and only if there exists
M > 0 such that | f(x) — f'(x)] <M forall x € X.

(a) Prove that ~ is an equivalence relation on .% .
(b) Define + and - on .% / ~ by [f]+ [g] = [f +g] and [f]- [g] = [f - g]. Prove that + is well-defined
and - is not.

Proof. We show that ~ is reflexive, symmetric, and transitive. It is reflexive, because |f(x) —
f(x)| =0<1, for all x € X. Thus, f ~ f. It is reflexive, because if f ~ g, then for all x € X,
|f(x) —g(x)| <M. Thus, |g(x) — f(x)| =|f(x) —g(x)| <M forall x € X. Thus, g ~ f. Suppose
that f ~ g and g ~ h. By definition of ~, there exist M, M, > 0 such that

If(x)—glx)] < Mjand
lg(x) —h(x)] <M,

for all x € R. Then adding our two equations:

My + M > |f(x) = g(x)[ + [g(x) — h(x)] = [ £(x) —g(x) +g(x) = h(x)| =|f(x) = h(x)|
for all x € R. (The second inequality comes from the triangle inequality for absolute value.)
Thus, f ~ h as desired.
Suppose that [f] = [1'] and [g] = [¢]. We show [£]+ [g] = [£'] + [¢']. Since [f] = [, f ~ f"
Thus, there exists M; > 0 such that | f(x) — f'(x)| < M for every x € R. Similarly, there exists
M, > 0 such that |g(x) — g’(x)| < M». Using the same trick as in our proof of transitivity, we
add the inequalities:

Mi+My > | f(x) = f' ()| +[g(x) = &' (X)| = [ £(x) = f'(x) + 8(x) — &' (x)| = |(f(x) +8(x)) = (f'(x) = &'(x))]|

for all x € R. Thus, (f+g) ~ (f'+¢'). Consequently, [f+¢g] = [f'+¢'] and so [f]+[g] =
[f'] + [¢'] as in the definition of addition for equivalence classes.

To see that multiplication is not well-defined, for all x € R, let f(x) = ¢* and f'(x) = "+ 5.
Let g(x) = x and g’'(x) = x+ 3. Note that f ~ f’ and g ~ g’. However, for all x € R:

|f(0)g(x) = f(x)g' X)) = |xe*—(x+3)(e"+5)]
= |xe* —xe*—3e" —5x— 15|
= |3e*+5x+ 15|
Since lim 3¢* + 5x + 15 = oo, the difference of the products is not bounded. Thus, fg + f'g’

X—o0
and so multiplication is not well-defined on equivalence classes.

O
(16) Suppose that f: A— B, g: B— C,and h: C — D are functions. Prove

ho(gof)=(hog)of

(17) There is a bijection from the interval (—10, 10) to the interval (1,2).

Proof. Let f(x) = zio(x— 1) +2 for all x € (—10,10). Observe that f: (—10,10) — (1,2) is a
function with inverse

) =20(y-2)+1
for all y € (1,2). Since f has an inverse function it is a bijection. ([l

(18) Suppose that G is a group with operation o and that H is a subgroup. For a,b € G define a ~ b if
and only if ao b~ € H. Prove that ~ is an equivalence relation on G.
9
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Proof. The axioms of a group would be given to you for this problem. Let G be a groupand H C G a
subgroup. Define a ~ b if and only if aob~! € H. We show ~ is reflexive, symmetric, and transitive.

Since aoa~! =¥ and since ¥ € H as it is a group, a ~ a. Thus ~ is reflexive.
Suppose that a ~ b. By definition aob~' € H. Since H is a subgroup (aob~!')~! € H. But
(aob™ )" '=boa'as

(aob Mo (boa ) =ao(bob Noa ! =K
and

(boa Yo(aob™ ) =bo(a 'oa)ob ! =k
by associativity and the definition of inverses. Thus, boa~' € H, so b ~ a. Thus, ~ is symmetric.
Finally, suppose that a ~ b and b ~ c. Then aob™' € H and boc™' € H. Since H satisfies the
closure axiom

(aob™o(boc™ ") eH
However,
(aob ™ Yo(boc™ ) =aoc™!

by associativity, the definition of inverse, and the properties of the identity element. Thus, aoc™! €
H so a ~ c. Thus, ~ is transitive. (]

Suppose that f: A— B, g: B— C,and h: C — D are functions. Prove
ho(gof)=(hog)of

Proof. Recall that by the definition of function composition, go f: A — Cand hog: B — D. Thus,
ho(gof): A—D
and
(hog)of: A—D
by the definition of function composition. Consequently, 2o (go f) and (hog) o f have the same
domain and codomain.

Now for any x € A, we have:

ho(go f)(x) =h(go f(x)) = h(g(f(x)))
and
(hog)o f(x) =hog(f(x)) = h(g(f(x)).
Thus,
ho(gof)(x) = (hog)o f(x)
for every x € A. Thus, as ho(go f) and (hog) o f have the same domain and codomain and produce
the same output for an input, they are equal functions. g

Use induction to prove that for all n € N* there exists m € N* such that n =3m or n =3m+ 1 or
n=3m+2.

Proof. We induct on n. The base case is n = 0 for which observe that 0 = 3 -0, so the statement holds

with m = 0. Now suppose that there exists a k € N* such that there is an m € N* with k =3m+r

for some r € {0,1,2}. If r #2, then r+1 € {1,2} and we have k+ 1 =3m+ 1 ork+1 =3m+2,

as desired. If r =2, then k+1 =3m+2+ 1 =3(m+ 1) and the result again holds as m+ 1 € N*.

Thus by induction the result holds for all n € N*. O
10
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Use induction to prove that every convex polygon with n sides can be divided into (n — 2) triangles
using only edges with endpoints on the corners of the polygon.

Proof. We induct on n > 3. When n = 3, the polygon is a triangle and it is automatically tiled with
(n—3) = 1 triangles as required. Suppose that there is a k > 3 such that every convex polygon with
k sides can be tiled with k£ — 2 triangles using edges that have their endpoints on the corner of the
polygon. Let P be a convex polygon with k& + 1 sides. There are corners vy, v,,v3 such that v; # v3
and v; and v, are the endpoints of a side of P as are v, and v3. Let e be the line segment in R2
joining vy to v3. Since k+ 1 = 4, this line segment divides P into two polygons A and B, with one of
them (say B) being a triangle and the other (A) having k sides (one of which is e). By our induction
hypothesis, A can be tiled with (k — 2) triangles, each with their edges on the corners of A. Since B
is a triangle, those triangles together with B tile P and the edges of the triangles have their endpoints
on the corners of P. By induction, every polygon with n > 3 sides can be subdivided into (n —2)

triangles using only edges with endpoints on the corners. (|
Let xo = v/2 and define x,, | = \/2+x, for all n € N*. Prove that for all n € N*, x,.1 > x,,.

Proof. We induct on n. For n =0, x; = /24 v/2 > v/2 = xo. Suppose there is a k € N* such that
Xr+1 > xr. Then observe that:

x%k+1)+1 = (V2 +5:1)? =24 x> 2+
where the inequality arises from the inductive hypothesis. Taking the square root of both sides:

X(k1)+1 = V 2+ Xk = X1
Thus, by induction, x,,+1 > x, for all n € N*.

O

Give a thorough outline of a proof that if f is a permutation of a set X with n > 2 elements, then f
is the composition of transpositions. (A transposition is a permutation such that there exists distinct
a,b such that f(a) = b and f(b) = f(a) and f(x) = x for all x # a,b.)

Proof. We induct on the number n of elements of X. If n = 2, then X = {a,b} with a #b. A
bijection f: {a,b} is either a transposition or the identity. The result holds automatically if f is a
transposition. If it is the identity, observe it is the composition of the transposition interchanging a
and b with itself.

Suppose that for some k > 2, every permutation of a set with k elements is the composition of
permutations. Let f: X — X be a permutation of a set X having k+ 1 elements. Let xg € X. If
f(x0) =x0, then g: X\ {xo} — X\ {x0} defined by g(xo) = xo is the composition of transpositions.
Extending those transpositions to have domain and codomain equal to X, we see that f is also a
composition of transpositions.

Suppose, therefore, that f(xg) # xo. Let T: X — X be the transposition such that 7(xo) = f(xo)
and 7(f(x0)) = xo. Then 7o f(x9) = xo. Consequently, by the previous paragraph, there exist
transpositions Ty, ..., T, such that

Tof =T 0Tp0 - 0Ty.
Noting that 7 o T is the identity, we have:

f=ToTof=7To0T 01O 0Ty
11



Thus, f is also a composition of transpositions. O

(24) (CHALLENGE) Let X be the set of all real-valued functions on the vertices V of a graph G having
directed edges and let ¥ be the set of all real valued functions on the edges E of G. If e is a
directed edge of G, let e_ be the tail of e and e be the head of e. Define V: X — Y by declaring
V(f): E — R to be the function defined by V(f)(e) = f(es) — f(e—) for all e € E. Prove that V is
surjective if and only if G has no cycles.

Proof. (sketch)

Suppose first that V is surjective. We prove that G has no cycles by contradiction. Suppose that
V0, V1,V2,...,V, are the vertices of a cycle (n > 1). That is for each i € {0,...,n— 1} there is an edge
E; pointing from v; to v;;+; and there is also an edge E,, pointing from v, to vo. Let g € Y be the
function such that g(Ep) = 1 and g(e) = 0 for every edge of G other than E. Suppose that there
exists f € X such that Vf = g. Suppose also that f(vg) =c € R. Then 1 = Vg(Ey) = f(vi) — f(vo).
Thus, f(vi) = 1+ c. By induction, f(v,) = n+ c. However, then

0=Vg(E,) = f(vo) = f(va) =c—(n+c)=—n.
This contradicts the fact that n > 1.

Suppose now that G has no cycles. We prove that V is surjective. Let g € Y. Without loss of
generality, assume G is connected (otherwise, repeat the following argument in each component.)
Let v be a vertex of G. Since G has no cycles, for each vertex v € G, there is a unique path from
vo to v. Let eg,ey,...,e, be the edges of that path. (The path may travel backwards along some
edges.) Let vi,va,...,vy1 = v be the vertices of the path so that v; and v are the endpoints of e;.
Let f(v) = +g(eo) £ g(e1) £ --- £ g(en), where each sign is determined by whether the path travels
in the same direction as e; (in which case, use +) or in the opposite direction (in which case use —).
For an edge e in the path, the value of V(f) is the difference of the values of f on the endpoints. It
follows that it is equal to g. (more details needed) O

(25) (Bonus solution) There is a bijection from the interval [0, 1] to the interval (0, 1).

Proof. For all n € N, let s, = % + 2—1n Observe that if s, = 5, then n = m. For all n € N, let
t, = % — 217 Again notice that if 7, = t,, then n = m. Also, there does not exist n,m € N such that
sp = ty. Consequently, we have a function f: [0,1] — [0, 1] defined by
spa1  if there exists n € N with x = s,
f(x) =< tpy1 if there exists m € N with x = 1,
X otherwise
Furthermore, since s; = 1 and #; = 0, neither O or 1 are in the range of f and that range f = (0,1).
Restricting the codomain of f to (0,1), we have a function f: [0,1] — (0,1). It has inverse
f7':(0,1) — [0,1] given by
sy—1 If there exists n € Nwithx =5, andn > 2
fﬁl(x) = { tyu—1  if there exists m € N with x = ¢, and m > 2
X otherwise .

Thus, since f has an inverse it is a bijection. U

(26) (Bonus solution) Suppose that a,b € N. Show there exist ¢, € N* such that b = ag+r and r < 0.
12



Proof. We induct on b, so consider a € N to be fixed.
Base Case: b = 1.

If a =1, then b = a(b) + 0, so letting ¢ = b and r = 0, we have the desired result. If a > 1, then
b=a(0)+ 1 and letting ¢ = 0 and r = 1 < a concludes the base case.

Inductive Step: Assume that there is a k € N such that there are g, r € N* with k =ag+rand r < k.
We prove that there exist ¢, € N* with k+ 1 = aq’ +# and ¥ < a. We split the proof into two
cases: r<a—landr=a—1.

Casel: r<a-—1.

Letd =qgand ¥ =r+1. Thenk+1=(ag+r)+1=aq+(r+1)=aq +7r. Sincer <a—1,
r<a.

Case2:r=a—1.

Letg =g+ 1and ¥ =0. Forthen k+ 1= (ag+r)+1=aq+(a—1)+1=alg+1)=aq +7.
Since ¥ < a, we have the desired result.

0
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