
F22 MA 274: Exam 3 Study Questions - Partial Solutions

(1) Know the definitions on the website. Any other definitions that you need will be given to you.

(2) When you write a proof, focus on getting the organization clear and correct. If you have to skip
some steps or make an assumption that you don’t know how to prove, clearly state that that is what
you are doing.

(3) Know the theorems we’ve proved in class and the more significant theorems from the homework.

(4) Don’t try to memorize proofs. Instead remember the structure of the proof (proof by contradiction,
proof of uniqueness, element argument, etc.) and two or three key steps of the proof. Then at the
exam recreate the proof.

(5) At the exam, leave time to write up a nicely written version of each proof. You should have enough
time to sketch your ideas out on scratch paper before writing a final version of the proof.

(6) Study the previous study guides and exams as well as your homework, class notes, and the sections
of the text we covered.

Prove the following:

(1) Suppose that (xn) is a sequence in a set X such that for all N ∈ N there exists m ≥ N with
xm 6∈ {x1, . . . , xN}. Prove that there exists an injective sequence (ak) in X such that range(ak) =
range(xn). BONUS: Show that we may define the sequence (ak) in such a way that there is a
strictly increasing sequence (ni) in N with ak = xnk

for all k ∈ N.

Proof. Assume that (xn) is a sequence in a set X such that for all N ∈ N there exists m ≥ N with
xm 6∈ {x1, . . . , xN}. We will show that there is an injective sequence with the same range. We
construct it recursively.

Let a1 = x1. Assume we have defined a1, . . . , ak such that:

(a) All of a1, . . . , ak are distinct
(b) There exists nk ∈ N such that

{a1, . . . , ak} = {x1, x2, . . . , xnk
}.

By our hypothesis, the set Sk = {m ∈ N : xm 6∈ {x1, . . . , xnk
} is non-empty. By the well-ordering

principle, there is a least element; let nk+1 be that least element and set ak+1 = xnk+1
. Since

ak+1 = xnk+1
∈ Sk, all of a1, . . . , ak+1 are distinct. If nk ≤ j < nk+1, by our choice of nk+1 to

be the minimal element of Sk, we must have xj ∈ {x1, . . . , xnk
}. (In particular, if j < nk+1, then

xj ∈ {x1, . . . , xnk
}. Thus,

{a1, . . . , ak+1} = {x1, x2, . . . , xnk
, xnk+1, . . . , xnk+1

}.

By recursion we have a sequence (ak). For the BONUS, notice that n1 < n2 < · · · < nk for all k
and that (ak) = (xnk

).
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If (ak) were not injective, there would be k, ` such that ak = a`, but k 6= `. Without loss of
generality, we may assume k < `. Then,

a` ∈ {a1, . . . , ak, . . . , a`−1},

contradicting our construction of the sequence. Thus, (ak) is injective.

For each k ∈ N, there exists nk ∈ N such that

{a1, . . . , ak} = {x1, . . . , xnk
}

and ak = xnk
. Since ak+1 = xnk+1

is distinct from each of x1, . . . , xnk
, we must have nk+1 > nk

(as we already observed.) Since these are integers,

nk+1 ≥ nk + 1.

Thus, (by induction) nk ≥ k. Thus,

xk ∈ {x1, . . . , xnk
} = {a1, . . . , ak}.

So each xk is in the range of (an), as desired. �

(2) Suppose that (xn) is a sequence in R with the property that for all N ∈ N, there exists m ∈ N such
that xm < min{x1, . . . , xN}. Recursively define a sequence (nk) in N such that nk+1 > nk for all
k ∈ N and xnk+1

< xnk
for all k ∈ N.

Proof. Suppose that (xn) is a sequence in R with the property that for allN ∈ N, there existsm ∈ N
such that xm < min{x1, . . . , xN}. We will construct a strictly decreasing subsequence.

Let n1 = 1. Assume that we have defined n1, . . . , nk for some k so that

xn1 > xn2 > . . . > xnk

and
n1 < n2 < · · · < nk.

By hypothesis, the set

S = {m′ ∈ N : xm′ < min{x1, x2, . . . , xnk
}}

is non-empty. Let nk+1 be the least element of S. It exists by the Well-Ordering Principle. Observe
nk+1 6∈ {1, . . . , nk} since

xnk+1
6∈ {x1, x2, . . . , xnk

}.
Thus, nk+1 > nk. Also, since xnk+1

∈ S, we have xnk+1
< xnk

.

Thus, by recursion, we have a strictly decreasing subsequence (xnk
).

�

(3) If P is a (convex) polygon with n ≥ 3 sides, then P has a triangulation with n− 2 triangles and all
vertices of the triangulation are also vertices of P .

Proof Hint. For the convex case you can use regular induction. For the nonconvex case, use com-
plete induction. In both cases, for the inductive step break a polygon with k + 1 sides into two
polygons with fewer sides. In the convex case, you can guarantee that one of these polygons is a
triangle. Apply the inductive hypothesis to the smaller polygons and then glue back together to get
a triangularion of the larger polygon. �
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(4) Prove that if G is a finite, connected, non-empty planar graph, then the number of vertices minus
the number of edges plus the number of faces equals 2.

Proof Hint. Use complete induction and the fact that taking an edge away from a graph (but leaving
its vertices) results in at most two connected components. Consider two cases, depending on whether
or not there are one or two components. Some algebra is required. �

(5) Prove that if T is a tree with at least one edge, then T has at least two leaves (i.e. vertices that are
each incident to a single edge of T ).

Proof. Use complete induction on the number of edges and the definition of a “tree” as a connected
graph such that removing any edge keeps the graph connected. For the inductive step, choose an
edge e in a tree having k + 1 edges. Take it away to get two trees T1 and T2. Let L(T ), L(T1), and
L(T2) be the number of leaves of each of the trees. Explain why L(T ) ≥ L(T1) + L(T2) − 2 and
consider separetely the cases when one or both of L(T1) or L(T2) has only one leaf. �

(6) Suppose that f : N → N is a permutation such that there exists N ∈ N with f(n) = n for all
n > N . Prove that there exist transpositions τ1, ·, τk such that

f = τ1 ◦ · · · ◦ τk

Proof. For a permutation f : N → N, let N(f) = min{N : f(n) = n for all n > N} if it
exists. By our assumption, N(f) exists for all the permutations we care about. Induct on N(f).
If N(f) = 1, then f is the identity which counts as a transposition. Assume that there exists
k ∈ N such that for any permutation f ′ : N → N with N(f ′) ≤ k, then f ′ is the composition of
tranpositions. Let f be a permutation of N with N(f) = k + 1.

Since f is a bijection, f(j) ≤ k + 1 for all j ≤ k + 1. If f(k + 1) = k + 1, then N(f) ≤ k,
contradicting our choice of f . Thus, f(k + 1) = m for some m ≤ k. Let τ : N → N be the
transposition such that τ(m) = k + 1 and τ(k + 1) = m. Notice that τ ◦ f : N→ N is a bijection
and that τ ◦ f(n) = n for all n > k + 1. In fact,

τ ◦ f(k + 1) = τ(f(k + 1)) = τ(m) = k + 1.

Thus, N(τ ◦ f) ≤ k. By our inductive hypothesis, there exist transpositions τ1, . . . , τp such that

τ ◦ f = τ1 ◦ · · · ◦ τp.
Since τ is a transposition, τ ◦ τ is the identity function. Thus,

f = τ ◦ τ ◦ f = τ ◦ τ1 ◦ · · · ◦ τp.
Consequently, f is also a composition of transpositions.

By complete induction, we have our theorem. �

(7) Prove that for every natural number n ≥ 2, there exist prime numbers p1, p2, . . . , pk such that
n = p1p2 · · · pk.

Proof. We use complete induction on n. If n = 2, since n is prime, set p1 = 2. Then n = p1 and
the result holds.

Suppose the result holds for all natural numbers j with 2 ≤ j ≤ k for some k. If k + 1 is prime, let
p1 = k + 1. As in the base case, the result holds. If k + 1 is not prime, then there exist a, b such
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that 2 ≤ a, b ≤ k and k+ 1 = ab. By the inductive hypothesis applied to a and b, there exist primes
u1, . . . , um and v1, . . . , vp such that a = u1u2 · · ·um and b = v1v2 · · · vp. Thus,

k + 1 = v1v2 · · · vpu1u2 · · ·up
and the result again holds. By complete induction the result holds for all n ≥ 2.

�

(8) Prove that for every rational number r ∈ Q, there exist a ∈ Z and b ∈ N such that r = a/b and a
and b have no common factor other than ±1.

Proof. Let r ∈ Q. Let S = {a ∈ N∗ : ∃b ∈ N s.t. r = ±a/b}. Since r 6= 0 is rational, S 6= ∅.
By the well-ordering principle S has a minimal elements. Call it a. Let b be the corresponding
denominator such that r = ±a/b. If a and b have a common factor m ≥ 1, then a = km and
b = `m for some k, ` ∈ N. In which case, notice that 0 ≤ k ≤ a and r = k/`. Thus, k ∈ S. Since
a is the minimal element of S, a ≤ k. Since also k ≤ a, we have a = k. Thus, m = 1. If some
m < 0 is a common factor, then −m > 0 is as well. So ±1 are the only common factors of a and
b. �

(9) Prove that if a and b are natural numbers, then there exist q, r ∈ N∗ such that b = aq+ r and r < a.

proof hint. You can use induction on b or the Well Ordering Principle problem. To do it with the
well-ording principle, set

S = {r′ ∈ N∗ : ∃q′ ∈ N∗ s.t. b = aq′ + r′}.

Argue that S 6= ∅ and choose r to be the minimal element of S. Show that the result holds for that
r and its corresponding q.

Here is the proof by induction on b. If b = 0, then b = a(0) + 0. Since a ≥ 1, we can set q = 0 and
r = 0 to get our result. Assume, therefore, that there is a b′ such that there exists q′, r′ ∈ N∗ such
that r′ < a and b′ = aq′ + r′. Let b = b′ + 1. We prove that there exists q, r ∈ N∗ with r < a so
that b = aq + r.

If r′ < a− 1, then r′ + 1 < a. In which case, let r = r′ + 1 and q = q′ and note that b = aq+ r, as
desired. Suppose, therefore, that r′ = a− 1. Then:

b = b′ + 1 = aq′ + r′ + 1 = aq′ + a = a(q′ + 1) + 0

Setting q = q′ + 1 and r = 0, we again obtain our result. By induction, the statement holds for all
a, b.

�

(10) Prove that if α is a path from a vertex a to a different vertex b in a graph G, then either α does not
pass through any vertex twice or there is a path from a to b which contains fewer vertices than α.

Proof. Let a and b be distinct vertices in a graph G. Assume that there is a path in G from a to b.
Let S be the set of all n ∈ N such that there is a path from a to b containing exactly n vertices.
Assume that S is non-empty; that is, assume that there is a path from a to b. Let n be the minimal
element of S, which exists by the well-ordering principle. Let α be a path from a to b containing
exactly n vertices. Write:

α = v0, v1, . . . , vn−1
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where v0 = a, vn−1 = b, and vi and vi+1 are endpoints of an edge in G for all i. Suppose, for a
contradiction, that i < j and that vi = vj . Consider the path:

β = v0, v1, . . . , vi, vj+1, . . . , vn−1

obtained by removing the vertices vi+1, . . . , vj from α. To see that β is a path, recall that vi = vj
and so vi and vj+1 are the endpoints of an edge in G. Since i < j, β has fewer vertices than α and
is still a path from a to b. This contradicts our choice of α, and so α has no repeated vertices. �

(11) Prove that if e is an edge of a connected graph then G− e has at most two connected components.

Proof. Let a, b be the endpoints of e. Suppose that v is any vertex of G. Let S be the set of all
n ∈ N∗ such that there is a path from v to either a or b having length n. Since G is connected, S is
non-empty. By the well-ordering principle, there exists a least element of S. Let α be a path from v
to either a or b having the least length among all such paths.

Suppose α is the sequence
v = v0, v1, . . . , vn

where vn is either a or b. If α traverses e, there exists an i < n such that vi = a and vi+1 = b or
vice versa. Then

v0, v1, . . . , vi

would be a path from v to either a or b of shorter length than α. This contradicts the choice of α, so
α must not traverse e. Thus, α is a path in G− e from v to one of the endpoints of e.

We conclude that every vertex of G − e is in the same connected component of G − e as one (or
both!) of the endpoints of e. Since e has two endpoints,G−e can have at most two components. �

(12) Prove that a connected nonempty graph where every vertex has even degree has an Euler circuit.

idea of proof. Let G be a connected graph with every vertex of even degree.

Case 1: Suppose that every vertex of G has degree 2.

We induct on the number of edges. If G has no edges it consists of a single vertex. The path
consisting of only that vertex is an Euler circuit. Suppose therefore that the result holds when G has
k ≥ 0 edges. We show it has k + 1 edges. If G has an edge that is a loop based at a vertex v, then
remove it to get a graph G′. Every vertex of G′ still has even degree (since loops contribute two
to degree), so G′ has an euler circuit. At the first moment in the Euler circuit when we arrive at v,
insert the loop into the Euler circuit. This is then a circuit in G traversing every edge exactly once;
hence, and euler circuit. If G does not have any loop, let G′ be the graph obtained by removing
a vertex v and merging the edges e− and e+ into a single edge e. Since neither e− nor e+ are a
loop, this is possible. G′ has every vertex of even degree, so by the inductive hypothesis it has an
euler circuit. When e appears in that euler circuit, split it into the two edges e− and e+ traversed in
the order so that we still have an euler circuit in G. Thus, by induction, every such G has an euler
circuit. �(Case 1)

In the general case, let v be a vertex ofG having degree at least 4. Split v into the number of vertices
corresponding to its degree and pair edges up at each of those. Each connected component of the
resulting graph G′ has at least one less vertex than G of degree greater than 2, so by induction each
has an Euler circuit. By a cyclic shift we may assume each of those circuits starts at the new vertices.
Patching them all together gives an Euler circuit in G. By induction the result holds. �

5



(13) Prove that if α is a path from a vertex a to a different vertex b in a graph G, then either α does not
pass through any vertex twice or there is a path from a to b which contains fewer vertices than α.

Proof. Suppose that α is a path from vertex a to vertex b. We write α as:

v0, v1, . . . , vn

where v0 = a, vn = b and for i ∈ {0, . . . , n}, the vertices vi and vi+1 are the endpoints of an edge.

If no vertex in the list is repeated, we are done. so suppose that vi = vj for some i < j. Then
consider:

v0, . . . , vi−1, vj , vj+1, . . . , vn

If i = 0, then this means: vj , vj+1, . . . vn. Since j − i > 0, this list has fewer vertices than α.
Futhermore, if i = 0, then a = v0 = vj and if i > 0, then since vi = vj , the vertices vi−1 and vj are
the endpoints of an edge. Thus, this list is a path from a to b with fewer vertices than α. �

(14) If X is a set such that there is an injection f : X → B where B is a proper subset of X , then X is
infinite.

proof idea. Create an injective sequence by letting x0 ∈ X\B and letting xk+1 = f(xk). Show this
is an injective sequence. IfX were finite, we would have an injection {x1, x2, . . .} → {1, 2, . . . , N}
for some N ∈ N. However, this is impossible since finite sets do not have infinite subsets. �

(15) Prove that if n is a natural number, then there exists m ∈ N and digits di ∈ {0, 1, 2} for i ∈
{0, . . . ,m} such that

n =

m∑
i=0

di3
i

(In other words, natural numbers can be written in ternary notation.)

Proof. We use complete induction on n. If n = 1, set d0 = 1 and notice that n = d0 · 30. Assume
there is a k ∈ N such that for all j ≤ k, j can be written in ternary notation. We show that k+ 1 can
be written in ternary notation.

Case 1: k + 1 is not a multiple of 3.

By IH, there exist d0, . . . , dm so that

k = dm · 3m + · · ·+ d1 · 3 + d0 · 30.

Thus,
k + 1 = dm · 3m + · · ·+ d1 · 3 + (d0 + 1) · 30.

If d0 = 2, then
k + 1 = 3

(
dm · 3m−1 + · · ·+ d1 · 30 + 1

)
would be a multiple of 3, contradicting the case we are in. Thus, d0 6= 2. By definition, d0 ∈ {0, 1}
and so (d0 + 1) ∈ {0, 1, 2}. Thus, k + 1 can be written in ternary notation.

Case 2: k + 1 is a multiple of 3.

In this case, there exists j ∈ N such that k + 1 = 3j. By the IH, m can be written as

j = dm · 3m + · · ·+ d1 · 3 + d0 · 30

with each di ∈ {0, 1, 2}. Thus,

k + 1 = 3j = dm · 3m+1 + · · ·+ d1 · 32 + d0 · 31
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can also be written in ternary. �

(16) Prove that a subset of a countable set is countable.

Proof Sketch 1. If A is finite it is countable by definition, so assume that A is infinite. Every subset
of a finite set is finite, so X is also infinite. By assumption X is countable, so there is a bijective
sequence (xn) in X . Since A is non-empty, the set S0 = {n ∈ N : xn ∈ A} is nonempty. By the
well-ordering principle it has a minimum n0. Assume we have defined xn0 , . . . , xnk

so that they are
all distinct, n0 < n1 < · · · < nk and for every i, j such that ni < j < ni+1, xj 6∈ A.

Let Sk+1 = {n > nk : xn ∈ A and xn 6= xn1 , xn2 , . . . , xnk
}. SinceA is infinite, Sk+1 is nonempty.

Let nk+1 = minSk+1; it exists by the well-ordering principle. Then xnk+1
∈ A and is different

from xn1 , . . . , xnk
and nk+1 > nk. Furthermore, since nk+1 was the minimum of Sk+1, each xj

with nk < j < nk+1 is not an element of A. By recursion we have a sequence (xnk
) in A.

That sequence is injective since if xni = xnk
for some i < k, then when we defined xnk

it would
have been equal to one of the previous terms of the sequence, but it was not. Similarly, the sequence
is injective, since the sequence (xn) is surjective in X , so if a ∈ A, then there exists n such that
a = xn. Since there is a k such that n < nk, and since for each i any term of (xn) between xni and
xni+1 is not in A, xn must be one of the terms of (xni). Since A contains a bijective sequence, it is
countable.

�

Proof Sketch 2. We begin by showing that every subset of N is countable. Let A ⊂ N. If A is finite,
it is countable by definition, so assume that A is infinite. In particular, A 6= ∅. Let a1 = minA. It
exists by the well-ordering principle. Assuming we have defined distinct a1, . . . , ak, define

ak+1 = minA \ {a1, . . . , ak}.
It exists by the well ordering principle and the fact that i 7→ ai is a bijection {1, . . . , k} →
{a1, . . . , ak} and soA 6= {a1, . . . , ak} because it is infinite. Notice that a1, . . . , ak+1 are all distinct.
By recursion we have an infinite sequence (ak) which must be injective. In fact,

a1 < a2 < · · · < ak < · · ·
for all k ≥ 3, since if B,C are subsets of N such that B ⊂ C, then minC ≤ minB. Setting
B = A \ {a1, . . . , ak+1} and C = A \ {a1, . . . , ak} produces the desired inequality.

If a ∈ A, then for large enough k, ak > a. In which case, we must have a ∈ {a1, . . . , ak}. Thus,
(ak) is a bijective sequence and so A is countable. Thus, every subset of N is countable.

Now suppose that X is any countable set and that A ⊂ X is any subset. If X = ∅, then A = ∅ and
A is countable. Suppose X 6= ∅. Then, by definition, there exists a subset X ′ ⊂ N (which is either
{1, . . . , n} for some n or N itself) and a bijection f : X ′ → X . Let A′ = {x ∈ X ′ : f(x) ∈ A}.
Notice that

f |A′ : A′ → A

defined by f |A′(x) = f(x) is a bijection.

Since A′ ⊂ X ′ ⊂ N, by our result above A′ is countable. Since it is in bijection with A, A must
also be countable. �

(17) (Bonus Solution) Prove that the following sets are countable:

(a) Z
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(b) N× N
(c) Q+ = {q ∈ Q : q > 0}
(d)

⋃
λ∈Λ

Aλ where Λ is a non-empty countable set and each Aλ is non-empty and countable.

Proof. Recall that we proved that a non-empty set X is countable if and only if there is a
surjection N → X . Equivalently, X is countable if and only if there is a surjective sequence
(xn) in X . Since Λ is countable and non-empty, there is a surjective sequence (λn) in Λ. Since
Aλn is non-empty and countable, there is a surjective sequence (an,k)k in Aλk . Thus, ank

is
the kth element of the nth set. Since every element of

⋃
λ∈Λ

Aλ is in at least one of the sets Aλk ,

the function
f : N× N→

⋃
λ∈Λ

Aλ

defined by f(n, k) = an,k is surjective.
Since N× N is countable (by the Cantor snake), there is a bijection g : N→ N× N. Thus,

f ◦ g : N→
⋃
λ∈Λ

Aλ

is a surjection. Consequently,
⋃
λ∈Λ

Aλ is countable. �

(e) Nk = N× N× · · · × N︸ ︷︷ ︸
k

Proof Idea. There are (at least) two ways to do this. Notice that when k = 1 we have N = N1

and that is countable by definition. If k = 2, we have N× N which is countable by the Cantor
Snake. Induct on k and use the fact that Nk+1 is in bijection with N× (Nk).

�

(18) Prove that for every set X , cardX < cardP(X).

(19) The set of sequences in {0, 1} is uncountable.

(20) The interval (0, 1) is uncountable.

(21) If X is an infinite set, then there exists an infinite injective sequence in X

Proof. Assume X is an infinite set. We will construct an injective sequence in X recursively.

Since X is infinite, it is not finite. Thus it is non-empty and no function X → {1, . . . , n} is
a bijection, for any n ∈ N. Since X is not empty, there exists x1 ∈ X . Suppose that there
exists k ∈ N such that we have defined x1, . . . , xk ∈ X all distinct. Notice that {x1, . . . , xk} →
{1, . . . , k} defined by xi 7→ i is a bijection since x1, . . . , xk are all distinct. Thus, {x1, . . . , xk} (
X . Therefore, there exists xk+1 ∈ X \ {x1, . . . , xk}. Observe that x1, . . . , xk+1 are all distinct. By
recursion, we have a sequence (xn) in X .

We show that (xn) is injective. Suppose that xi = xk with i ≤ k. By construction, however,
x1, . . . , xk are all distinct and so i = k, as desired. �

(22) If X has an infinite injective sequence in X , then for any element a ∈ X , cardX = cardX \ {a}.

Proof. Let (xn) be an injective sequence inX . If a 6= xm for anym ∈ N, let y1 = a and yk+1 = xk
for k ≥ 1. Notice that (yn) is an injective sequence whose first term is a.
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If a = xm for some m ∈ N, let yn = xn+(m−1) for all n ∈ N. Notice that (yn) is still an injective
sequence and that y1 = a.

In either case, define f : X → X \ {a} by f(x) = yn+1 if x = yn for some n ∈ N and f(x) = x
otherwise. Since (yn) is injective, f is well-defined and since a = y1 the X \ {a} is the codomain
for f . �

(23) If there exists a ∈ X such that cardX = cardX \ {a}, then X has an infinite injective sequence.

Hint: Define a0 = a and ak+1 = f(ak) for k ≥ 0 where f : X → X \ {a} is a bijection. �

(24) If X and Y are sets such that there is an injection f : X → Y , then there exists a surjection
g : Y → X .

Proof. For this to be true, we need to assume thatX 6= ∅. Assume we have an injection f : X → Y .
Define g : Y → X as follows. Choose some x0 ∈ X . If y 6∈ range f , define g(y) = x0. If
y ∈ range(f), let g(y) equal that x ∈ X such that f(x) = y. Since f is injective, g is a well-
defined function. Since f is a function, g is surjective. �

(25) Let S1 be the unit circle. For any α ∈ R, let Rα be the counterclockwise rotation by α radians. (If
α < 0 this means rotate by |α| radians clockwise.) Suppose that θ ∈ R. Let (xn) be the sequence in
S1 where x0 = (1, 0) and xn = Rθ(xn−1) for all n ∈ N. Prove the following:

(a) The sequence (xn) is injective if and only if θ 6∈ πQ (i.e. θ is not a rational multiple of π.)

Proof idea. We did this very early in the semester. Recall that xn is obtained by rotating x0 by
an angle nθ. Thus if xn = x0, we conclude that nθ = 2πk for some k ∈ Z. Solving for θ
shows that θ is a rational multiple of π. �

(b) The sequence (xn) is periodic (i.e. there exists n ∈ N such that xn = x0) if and only if θ is a
rational multiple of π.

Proof idea. Same idea as in the previous one. If xn = xm, then there exists k ∈ Z such that
nθ = mθ + 2πk. �

(c) The sequence (xn) is not surjective.

Proof. Since S1 is uncountable (remember how to prove this?) no sequence in S1 can be
surjective. �

(d) If θ 6∈ πQ, then there exists a subsequence (xnk
) converging to x0.

(26) Prove that the set of algebraic numbers is countable and, therefore, that the set of transcendental
numbers is uncountable.

(27) Let X = P(R) and define ∼ on X by A ∼ B if and only if there exists a bijection f : A → B.
Prove that ∼ is an equivalence relation.

(28) Let X be a non-empty set and let F be the set of bijections of X to itself (i.e. permutations of X).
For f, g ∈ F define f ∼ g if and only if there exists a bijection h ∈ F such that

f = h−1 ◦ g ◦ h.

Prove that ∼ is an equivalence relation.
9



Proof. Let id : X → X be the identity permutation. Recall that id−1 = id. Thus,

f = id−1 ◦f ◦ id = id ◦f ◦ id = f.

Thus, ∼ is reflexive.

Suppose that f ∼ g. Thus, there is h ∈ F such that f = h−1 ◦ g ◦ h. Notice that

(h−1)−1 ◦ g ◦ h−1.

Since h−1 is also a permutation of X , ∼ is symmetric.

Now suppose that f ∼ g and g ∼ k. Then there are permutations h and j such that

f = h−1 ◦ g ◦ h

and
g = j−1 ◦ k ◦ j.

Thus, by associativity we have

f = h−1 ◦ j−1 ◦ k ◦ j ◦ h
= (j ◦ h)−1 ◦ k ◦ (j ◦ h).

Since the composition of bijections is a bijection, j ◦ h is a permutation of X . Thus, f ∼ k. Hence,
∼ is transitive. �

(29) Let G be a group and H ⊂ G a subgroup. Define∼H on G by declaring x ∼H y if and only if there
exists h ∈ H with x = h ◦ y.

(a) Prove that ∼H is an equivalence relation.

Proof. Since H is a subgroup, 1 ∈ H . Since for all x ∈ G, x = 1 ◦ x, x ∼H x. Thus, ∼H is
reflexive. If x ∼H y, then there exists h ∈ H such that x = h ◦ y. Thus, h−1 ◦ x = y. Since
H is a subgroup, h−1 ∈ H . Thus, y ∼H x, so ∼H is symmetric. Finally, suppose that x ∼H y
and y ∼H z. Then there exist h1, h2 ∈ H such that x = h1 ◦ y and y = h2 ◦ z. Substituting
and using associativity, we have:

x = (h1 ◦ h2) ◦ z

Since H is a subgroup, h1 ◦ h2 ∈ H , so x ∼H z. Thus, ∼H is transitive.
�

(b) Let a ∈ G and let [a] be its equivalence class under h. Define f : H → [a] by f(h) = h ◦ a.
Prove that f is a bijection.

Proof. Define g : [a]→ H by g(x) = x◦a−1. If x ∈ [a], by definition a ∼H x. By symmetry,
x ∼H a. Thus, there exists h ∈ H such that x = h ◦ a. Thus, x ◦ a−1 = h ∈ H , so g
satisfies the domain condition. It is well-defined, since its definition does not depend on any
particular representation of an element of [a]. Note that g ◦ f(h) = (h ◦ a) ◦ a−1 = h and
f ◦ g(x) = (x ◦ a−1) ◦ a = x. Thus, f and g are inverse functions and so f is a bijection. �

(c) Explain why H and [a] have the same cardinality.

Proof. There exists a bijection between them. �

(d) Conclude that if G is finite, then |G/ ∼H | = |G|/|H|. (This is Lagrange’s Theorem in Group
Theory)
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Proof. Suppose that G is finite and has n elements. (Since G contains 1, n ≥ 1.) The quotient
setG/ ∼H is a partition ofG. By the previous part, every element ofG/ ∼H has |H| elements.
Since there are |G/ ∼H | sets in G/ ∼H and each of them contains |H| elements and every
element of G is in exactly one of those sets, |G| = |G/ ∼H ||H|. �

11


