\qquad
\qquad
\qquad

Tum If D is a connected, reduced alternating diagram of a link L then span $X(L)=4 C(D)$
where $C(D)$ is the number of crossing $l D$.

Lemma 1 (Ever's Them)
If G is a connected, planar graph (nonempty) then $V-E+F=2$ whee $V=\#$ vertices, $E=\#$ edges, $F=\#$ regions, including the outer one.
pf Induct on E aud shrink an edge e.g. $\gg \rightarrow$ to do the induction. \square
lemma 2 Every connected graph st every cycle has an even \# of edges is bipartite
(ie. varices con be colored $B \Psi \omega$ st. adjacent vertices are different colors. pf Color the first vertex B, its neighbors ω and soon
if it veren't $\% 0_{0}^{0} 0^{\circ}$ a b: partite coloring, there would be an odd cycle.

Proposition let D be a connected link diagram. Then it con be checker bard colored \& the to tel numb of regions is $2+c(D)$.

Proposition let D be a connected link diagram. Then it can be checker bard colored \& the toll numb of regions is $2+c(D)$
pf Let G be the shadow of the knot. Cire. D, but forget the crossing info.) Notice each vertex of G has degree 4. The total \# of edges is then $\frac{1}{2}(4 c(D))=2 c(D)$ and the total $\#$ of vertices is $C(D)$. By Euler's Theorem $C(D)-2 C(D)+F=2 \Rightarrow F=2+C(D)$. let Γ be the dual graph to G :

Around each vertex of G we hare

If $\gamma \subset \Gamma$ is a cycle mark a vertex V

use this more to collapse inward until we collogsto v \Rightarrow even $\#$ of egads in ?
Thus Γ is bipartite which is what oe were to prove.

proof on Main Thevem
since $X(K)=\left(A^{+3}\right)^{-\infty(D)}\langle D\rangle$
the span $f X(K)$ is equal to the span $\ell\langle D \geqslant$
Recall $\langle D\rangle=\sum_{S} A^{a(s)} A^{-b(s)}\left(-A^{2}-A^{-2}\right)^{(s)-1}$
where S is a choice ("state") of A smoothing or B smoothing at each crossing D
\& $|s|$ is the number of circles in S.
Recall that the smoothing are $\therefore \circ-\infty \xrightarrow{A})($ (o
Since D is alternating in $\frac{\downarrow B}{+\quad}$ each region we hare along each edge.

So each circle in the all A-smoothing contains the bluedots and each circle in all-B smoothing contains pupleduts
eg.
 all

We conclude that

$$
\binom{\# \text { circlesin }}{\text { all A-smoothing }}+\binom{\# \text { cirlesin }}{\text { all } B \text {-smoothing }}=\# \text { regims }=c(D)+2 .
$$

Also notice that if S_{1} is a state
(choice of A or B smoothing at each crossing) w/ $\left|S_{1}\right|=1$ circles and if S_{2} is obtained by switching one A smoothing to one B smoothing then $\left|S_{2}\right|=\left|S_{1}\right| \pm 1 \mathrm{~b} / \mathrm{c}$ eithn two circles merge or one circle splits (fusion or fission)

Now for the all A-spliting
(The Jordan Cove Theorem implies he con't have

which would mean the of cirls didn't chase) each bridge joins distinct circles
 b/c otherwise
the diagram wouldn't be reduce

Observe if we had a bridge that was Self adjacent we could draw a circle
 containing the bridge I disjoint from the rest of the diagram \Rightarrow diagram not reduced.

Now considu the highs parer of A arising from a state S_{1} : Te term S_{1} contributes to $\left\langle s_{1}\right\rangle$ is $A^{a\left(s_{1}\right)} A^{-b\left(s_{1}\right)}\left(-A^{2}-A^{-2}\right)^{\left|s_{1}\right|-1}$
\& the highest power of A hare is

$$
a\left(s_{1}\right)-b\left(s_{1}\right)+2\left(\left|s_{1}\right|-1\right)
$$

if S_{2} is obtained bs changing an A smoothing to a B smoothing, then the highost power far its term is $\quad a\left(s_{1}\right)-1-\left(b\left(s_{1}\right)+1\right)+2\left(\left|s_{1}\right| \pm 1-1\right)$ $\leq a\left(S_{1}\right)-b\left(S_{1}\right)+2\left(\left|S_{1}\right|-1\right)$
w) equality on $l y$ if the A to B switch was a fission.

Thus the all A-smoothing contributes the his lest pawn of A to $\langle D\rangle$ and it is unique in doing so.
Similarly the all B-smothing unizult continues the lust power of A to $\langle D>$
\Rightarrow If we call S_{A} the all A-smoothig and S_{B} the all B. smoothing then

$$
\begin{aligned}
\text { span }\langle D\rangle= & a\left(S_{A}\right)-b\left(S_{A}\right)+2\left(\left|S_{A}\right|-1\right) \\
& -\left(a\left(S_{B}\right)-b\left(S_{B}\right)-2\left(\left|S_{B}\right|-1\right)\right) \\
= & c(D)-0+2\left|S_{A}\right|-2 \\
& +0+c(D)+2\left|S_{B}\right|-2 \\
= & 2 c(D)+2\left(\left|S_{A}\right|+\left|S_{B}\right|-2\right) \\
\text { lemma 1 }= & 2 c(D)+2(c(D)+2-2) \\
= & 4 c(D) .
\end{aligned}
$$

see next page for more!

The If D is a connected non-alternating diagram of a link L then
$\operatorname{span} X(L)<4 c(D)$
pf we continue the proof from before.
Consider a state S. The dual state \bar{S}
to S is the one obkined by changing all
A - smoothing in S to B smoothing s and all B-smothings to A-smoothings.
es

Focus on the spot where we have the
non alta crossing.

$$
\frac{1 \cdot \quad 1 \cdot}{\bullet 1^{\circ}}
$$

We see that in both cases we have nested circles.

Since the boundaries of the regions of the kuct diagram get broken in to pieces to make up the circles we must have fewer circles them regions eg

Thus, $\quad|S|+|\bar{s}|<$ \#regions $=c(D)+2$

Thus, $\max \operatorname{deg}\langle D\rangle \leqslant a(s)-b(s)+2|s|-2$

$$
\begin{aligned}
\min \operatorname{deg}\langle D\rangle & \geqslant a(\bar{s})-b(\bar{s})+2|\bar{s}|-2 \\
& =b(s)-a(s)+2|\bar{s}|-2
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \text { span }\langle D\rangle & \leq 2 a(s)-2 b(s)+2(|s|+|\bar{s}|-2) \\
& \leqslant 2 c(D)+2(|s|+|\bar{s}|-2) \\
& <2 c(D)+2(c(D)+2-2) \\
\text { the ky! } & =4 c(D)
\end{aligned}
$$

Corollary (Tai Conjectures)
The crossing \# for an alternation knot is achieved in every reduced alternating diagram.

This is not the unknot! Indeed it cannot be drawn w/ fewer crossings.

