
METRIC SPACES FROM THE POINT OF VIEW OF KNOT THEORY

SCOTT A. TAYLOR

Abstract. These notes are intended for an undergraduate course in knot theory, where the stu-
dents know how to read, write, and construct proofs.
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1. Metric Spaces

When we say that two locations on earth are a certain distance apart, we are assigning a non-
negative real number to pairs of points on the earth. That is, “distance on earth” is a function
from the Cartesian product of the earth with itself to the interval [0,∞). We expect any talk
of distance to make use basic “facts” such that the distance between two points doesn’t depend
on which one comes first, distinct points can’t have a distance of 0, and taking detours can only
increase distance. We enshrine these principles in a collection of axioms.

Definition 1.1. A set X together with a function d : X ×X → [0,∞) is a metric space if the
following hold:

(1) For all x ∈ X, d(x, x) = 0
(2) (Definite) If x, y ∈ X and d(x, y) = 0, then x = y.
(3) (Symmetry) For all x, y ∈ X, d(x, y) = d(y, x).
(4) (Triangle Inequality) For all x, y, z ∈ X,

d(x, z) ≤ d(x, y) + d(y, z).
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The function d is a metric. The elements of X are points. If d is clear from the context, we just
refer to X as a metric space. We also say that (X, d) is a metric space. If (X, d) satisfies all the
conditions for being a metric space except, possibly, the Definite Property, we say that (X, d) is a
pseudo-metric space and that d is a pseudo-metric.

Example 1.2. (Euclidean metric) Recall that if a = (a1, a2, . . . , an) and y = (b1, b2, . . . , bn) are
elements of Rn, then the dot product is

a · b = a1b1 + a2b2 + · · · anbn.
We define ||a|| =

√
a · a. Suppose that X ⊂ Rn. The euclidean metric on X is defined by:

d(x, y) = ||x− y|| =
√

(x− y) · (x− y)

for all x, y ∈ X. Proving that (X, d) is a metric space is a little tricky. A proof of a more general
fact is proved at the end of the section. When n = 1, notice that

d(x, y) =
√

(x− y)2 = |x− y|,
which is the usual measure of distance in R. It is a bit tedious, but hopefully straightforward, to
prove that d is a metric in this case. In the general case, the proof would take us too far afield.
The proof is easy to find online if you would like to see it.

Here are some more exotic examples of metrics on subsets of R2. Which of the metric space axioms
are easy (if tedious) to prove? Which are difficult?

Example 1.3. Let X ⊂ R2. Define

d((x1, x2), (y1, y2)) = |x1 − x2|+ |y1 − y2|
for all (x1, x2), (y1, y2) ∈ R2. This is called the taxicab metric.

Example 1.4. Let X ⊂ R2. For x, y ∈ X if there is a line in R2 passing through all of x and y
and the origin, define d(x, y) = ||x − y||. Otherwise define d(x, y) = ||x|| + ||y||. The metric d is
called the Paris metric on X, since unlesss two points are on the same line through the origin,
the shortest path between them is to travel from x to the origin and then out to y. Do you see
why? What’s the connection to Paris?

Example 1.5. Let X ⊂ R2. Suppose that x = (x1, x2) and y = (y1, y2) are elements of X. If
x1 = y1, define d(x, y) = |x2 − y2|. Otherwise, define d(x, y) = |x2|+ |x1 − y1|+ |y2|. The metric d
is called the comb metric on X. Sketch a picture of the shortest paths between different pairs of
points to see why.

The following theorem shouldn’t be surprising:

Theorem 1.6. Suppose that (A, d) is a metric space and that X ⊂ A. Then (X, d) is a metric
space, where we consider d : A×A→ [0,∞) as the restriction of d : X×X → [0,∞). (That is, we
only allow ourselves to measure the distance between elements of X, rather than between elements
of A.)

Despite the previous suggestions for trying to visualize the example metrics, we don’t yet have a
precise definition of “path” in a metric space. Don’t worry, we’ll get there! Here are two examples
of metric spaces where it’s not clear how to visualize paths.

Example 1.7. Suppose that X is any nonempty set. For x, y ∈ X, define d(x, y) =

{
0 x = y

1 x 6= y
.

The metric d is called the discrete metric on X. How does the discrete metric on R2 compare to
the euclidean metric?
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Example 1.8. Let X ⊂ Rn be any nonempty, closed and bounded subset of Rn. Let C0(X) =
{f : X → R} denote the set of continuous functions from X to R. For f, g ∈ C0(X), define

d(f, g) = max{|f(x)− g(x)| : x ∈ X}.
By the Extreme Value Theorem from (multivariable) calculus, d(f, g) is well defined. Showing that
d is a metric on C0(X) requires various facts from Calculus that we won’t go into. You might like
to try to prove that d is a metric.

We conclude with the product metric, something we’ll make a lot of use of.

Example 1.9. Suppose that (X, dX)and (Y, dY ) are metric spaces. For (a, b), (c, d) ∈ X×Y , define

d
(
(a, b), (c, d)

)
=
√
dX(a, c)2 + dY (b, d)2.

Then d is called the product metric on X × Y . The next lemma shows it is a metric.

Lemma 1.10. The product metric is a metric.

Proof. Let d be the product metric on X × Y where (X, dX) and (Y, dY ) are metric spaces. We
prove only that d satisfies the triangle inequality. The other aspects of being a metric are hopefully
straightforward to prove.

Let (a, b), (c, d), (e, f) ∈ X × Y . Set A = dX(a, c), B = dY (b, d), C = dX(c, e), D = dY (d, f). Then(
d
(
(a, b), (c, d)

)
+ d
(
(c, d), (e, f)

))2
= d

(
(a, b), (c, d)

)2
+ d
(
(c, d), (e, f)

)2
+ 2d

(
(a, b), (c, d)

)
d
(
(c, d), (e, f)

)
= A2 + C2 +B2 +D2 + 2d

(
(a, b), (c, d)

)
d
(
(c, d), (e, f)

)
=

(
A+ C

)2
+
(
B +D

)2
+ 2d

(
(a, b), (c, d)

)
d
(
(c, d), (e, f)

)
− 2AC − 2BD

Observe that

d
(
(a, b), (c, d)

)
d
(
(c, d), (e, f)

)2
= (A2 +B2)(C2 +D2) = A2C2 +B2D2 +B2C2 +A2D2

and that

(AC +BD)2 = A2C2 +B2D2 + 2ACBD.

Hence,

2d
(
(a, b), (c, d)

)
d
(
(c, d), (e, f)

)
− 2AC − 2BD = 2(B2C2 +A2D2 −ACBD)

= B2C2 +A2D2 + (B2C2 +A2D2 − 2ABCD)
= B2C2 +A2D2 + (BC −AD)2

≥ 0

Thus, applying the triangle inequality for dX and dY , we see:(
d
(
(a, b), (c, d)

)
+ d
(
(c, d), (e, f)

))2
≥

(
A+ C

)2
+
(
B +D

)2
≥ dX(a, e)2 + dY (b, f)2

.

Consequently,

d
(
(a, b), (c, d)

)
+ d
(
(c, d), (e, f)

)
≥
√
dX(a, e)2 + dY (b, f)2 = d

(
(a, b), (e, f)

)
.

�

Corollary 1.11. The euclidean metric is a metric on any subsets of Rn.

Proof. The case when n = 1 is straightforward, if tedious. When n ≥ 2, the result can be proved
by induction. �
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2. Open Sets

Definition 2.1. Suppose that (X, d) is a metric space, that a ∈ X and that r > 0. The open ball
centered at a of radius r is

Br(a) = {x ∈ X : d(a, x) < r}.
A subset U ⊂ X is open (more precisely, an open subset of X) if for every a ∈ U , there exists
r > 0 such that Br(a) ⊂ U .

We think of an open ball centered at a as the set of points that are “near” to a. A subset is open if
whenever a point is in the subset, nearby points are as well; but what “near” means gets to depend
on the point.

Example 2.2. Let X = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0} and let d be the euclidean metric on X. Let
a = (0, 0) and let b = (2, 2). Set r = 1. Sketch pictures of Br(a) and Br(b).

Example 2.3. Let X = R2 and let d be the comb metric. Let a = (0, 0). Let b = (2, 2). Let
c = (1/2, 1/2). Sketch Br(a), Br(b), and Br(c).

The next lemma ensures that we have consistent uses of the word “open.”

Lemma 2.4. Suppose that (X, d) is a metric space.

(1) Suppose that a ∈ X and r > 0. Then Br(a) is an open subset of X.
(2) Suppose that U ⊂ X is an open set. Consider (U, d) as a metric space (i.e. d is the subspace

metric on U ; the restriction of d to U). Suppose that A ⊂ U . Then A is an open subset of
U if and only if A is an open subset of X.

Example 2.5. Let X = R2 with the Euclidean metric. Let U = {(x, y) ∈ X : x ≥ 0, y ≥ 0}.
Explain why U is not open. Consider the set V = {(x, y) : x ≥ 0, y ≥ 0, x2 + y2 ≤ 1}. (This is the
open ball centered at (0, 0) in U .) Explain why V is open in U but not in X. Thus, the hypothesis
that U be open in part (2) of Lemma 2.4 is necessary.

The next theorem lists some fundamental properties of open sets. These properties can be ab-
stracted into the set of axioms for a “topology,” but we will not need to do that in this course.

Theorem 2.6 (Open sets in metric spaces form a topology). Suppose that (X, d) is a metric space.
Then the following hold.

(1) The subsets ∅ ⊂ X and X ⊂ X are open subsets of X.
(2) (Finite intersections of open sets are open) If U, V ⊂ X are both open, then U ∩ V is open.
(3) (Arbitrary unions of open sets are open) If Uα ⊂ X is open for all α ∈ Λ, then

⋃
α∈Λ

Uα is

open. (Λ is a nonempty index set.)

The complements of open sets are also useful.

Definition 2.7. Suppose that (X, d) is a metric space. A subset F ⊂ X is closed or a closed
subset of X if its complement FC is open.

Warning: “Open” and “Closed” are not negations of each other.

Example 2.8. Let X = R2 and let d be the Euclidean metric. The set X itself is both open and
closed. The set {(x, y) ∈ R2 : |x| < 1, y = 0} is neither open nor closed. The open ball B1(0, 0) is
open, but not closed. The set {(x, y) ∈ R2 : |x| ≤ 1, |y| ≤ 1} is closed but not open.
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Definition 2.9. Suppose that (X, d) is a metric space. A sequence (xn) in X converges to a
point a ∈ X if for every ε > 0, the sequence (xn) is eventually entirely contained in Bε(a). More
formally, there exists N ∈ N such that for all n ≥ N , xn ∈ Bε(a). We say that a is the limit of
(xn).

Example 2.10. Let X = R2 and let d be the Euclidean metric. Let xn = (1/n, 0) for every n ∈ N.
The sequence (xn) converges to (0, 0). To see this, assume ε > 0 is given. Let N ∈ N be any integer
such that N > 1/ε. If n ≥ N , then n > 1/ε and so 1/n < ε. Consequently, xn ∈ Bε(0, 0) for all
n ≥ N .

Example 2.11. Let X be any nonempty set and let d be the discrete metric on X. Suppose that
(xn) is a sequence in X and that a ∈ X. Then (xn) converges to a if and only if (xn) is eventually
constant at a. To see this, suppose first that (xn) converges to a. Let ε = 1/2. Then for large
enough n, d(xn, a) < 1/2. However the discrete metric only takes the values 0 or 1, so for large
enough n, d(xn, a) = 0. By the definition of metric, for large enough n, xn = a.

Now suppose that (xn) is eventually constant at a. That is, there exists N ∈ N such that for all
n ≥ N , xn = a. Let ε > 0 be given. Then for all n ≥ N ,

d(xn, a) = d(a, a) = 0 < ε.

Thus, for all n ≥ N , xn ∈ Bε(a) and so (xn) converges to a.

More generally:

Example 2.12. Suppose that (X, d) is a metric space and that (xn) is a sequence which is even-
tually constant at a ∈ X. Then (xn) converges to a.

Example 2.13. Give R2 and let U = B1(0, 0) ⊂ R2 also have the euclidean metric. For all n ∈ N,
let xn = (1− 1/n, 0). Then (xn) converges to (1, 0) in R2, but does not converge to any point in U .

Theorem 2.14 (Closed sets contain their limit points). Let (X, d) be a metric space and let F ⊂ X.
Then F is closed if and only if whenever a sequence (xn) in F converges to a ∈ X, then a ∈ F .

Theorem 2.15. Suppose that (X, dX) and (Y, dY ) are metric spaces and that d is the product
metric on X × Y . Prove that a subset U ⊂ X × Y is open in X × Y with the product metric if and
only if for all (a, b) ∈ U , there exist open sets UX ⊂ X and UY ⊂ Y such that UX × UY ⊂ U and
a ∈ UX and b ∈ UY .

Definition 2.16. Suppose that X is a set and that d and d′ are metrics on X. We say that d
and d′ are topologically identical if a subset U ⊂ X is open in (X, d) if and only if it is open in
(X, d′).

Lemma 2.17. Suppose that X is a set and that d and d′ are metrics on X. Then d and d′ are
topologically identical if and only if both of the following conditions hold:

(1) For every a ∈ X and r > 0, the ball Br(a) = {x ∈ X : d(x, a) < r} is an open set in (X, d′).
(2) For every a ∈ X and r > 0, the ball B′r(a) = {x ∈ X : d′(x, a) < r} is an open set in (X, d).

Example 2.18. Let X = R2 and let d be the euclidean metric and d′ be the taxicab metric. Then
d and d′ are topologically identical.

Example 2.19. Let X = R2 and let d be the euclidean metric and d′ be the comb metric. Then
d and d′ are not topologically identical.
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3. Continuity

In this section we explore different definitions of continuity, as well as some basic properties.

Definition 3.1. Suppose that X and Y are sets and that f : X → Y is a function. (Recall that
this means that there is a unique f(x) ∈ Y for every x ∈ X.) If A ⊂ X, we abuse notation and
define

f(A) = {y ∈ Y : ∃x ∈ A s. t. f(x) = y}
and if B ⊂ Y

f−1(B) = {x ∈ X : f(x) ∈ B}.
Notice that f(A) is a subset of Y and f−1(B) is a subset of X.

Definition 3.2 (Metric definition of continuity). Suppose that (X, dX) and (Y, dY ) are metric
spaces and that f : X → Y is a function. Then f is (metrically) continuous if for every a ∈ X and
every ε > 0, there exists δ > 0 such that

f(Bδ(a)) ⊂ Bε(f(a)).

Here is the definition of continuous function usually presented in calculus or analysis classes.

Definition 3.3 (Analytic definition of continuity). Suppose that (X, dX) and (Y, dY ) are metric
spaces. A function f : X → Y is (analytically) continuous if for every a ∈ X and every ε > 0,
there exists δ > 0 such that if dX(a, x) < δ then dY (f(a), f(x)) < ε.

Here is the topological definition of continuity. We summarize it by saying that inverse images of
open sets are open.

Definition 3.4 (Topological definition of continuity). Suppose that (X, dX) and (Y, dY ) are metric
spaces. A function f : X → Y is (topologically) continuous if for every open set U ⊂ Y , the
subset f−1(U) is open in X.

We can also use sequences to define continuity.

Definition 3.5 (Sequential definition of continuity). Suppose that (X, dX) and (Y, dY ) are metric
spaces. A function f : X → Y is (sequentially) continuous if whenever a sequence (xn) converges
to a point a ∈ X, the sequence (f(xn)) in Y converges to f(a) ∈ Y .

Theorem 3.6 (The different definitions of continuity are equivalent). Suppose that (X, dX) and
(Y, dY ) are metric spaces and that f : X → Y is a function. Then the following are equivalent:

(1) f is metrically continuous.
(2) f is analytically continuous.
(3) f is topologically continuous.
(4) f is sequentially continuous.

Proof. We show that (4) ⇒ (3) by proving the contrapositive. Assume that f is not topologically
continuous. Then there exists an open U ⊂ Y such that f−1(U) is not open in X. By definition,
there exists a ∈ f−1(U) such that for every ε > 0, Bε(a) 6⊂ f−1(U). In particular, for all n ∈ N, there
exists xn ∈ B1/n(a) \ f−1(U). Notice that (xn) converges to a. Since xn 6∈ f−1(U), by definition
f(xn) 6∈ U . However, f(a) ∈ U . Since U is open, there exists r > 0 such that Br(f(a)) ⊂ U . Thus,
for all n ∈ N, xn 6∈ Br(f(a)). Thus, the sequence (f(xn)) cannot converge to f(a). Thus, f is not
sequentially continuous.
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Now we show that (3) ⇒ (4). We prove this directly. Assume that f is topologically continuous
and that (xn) is a sequence in X converging to a ∈ X. We show that (f(xn)) converges to f(a). Let
ε > 0 and recall that Bε(f(a)) is open in Y . Since f is topologically continuous, U = f−1(Bε(f(a)))
is open in X. Thus, there exists δ > 0, such that Bδ(a) ⊂ U .

〈 Finish the proof that f is sequentially continuous. 〉

We leave the other parts of the proof of the theorem as an exercise. �

Henceforth, we just use “continuous” to mean any of these equivalent forms. Sometimes we refer
to a continuous function as a map.

Exercise 3.7. Show that a function f : X → Y between metric spaces is continuous if and only if
for every closed set V ⊂ Y , f−1(V ) is closed in X.

Theorem 3.8. Suppose that X, Y , and Z, are metric spaces and that f : X → Y and g : Y → Z
are continuous. Prove that g ◦ f : X → Z is continuous.

Definition 3.9. Suppose that X and Y are sets. The projections πXX×Y → X and πYX×Y →
Y are the functions such that πX((x, y)) = x and πY ((x, y)) = y for all (x, y) ∈ X × Y .

Exercise 3.10. Suppose that X and Y are metric spaces and that X × Y has the product metric.
Prove that the projections πX and πY are continuous.

Exercise 3.11. Suppose that (X, dX) and (Y, dY ) are metric spaces and that X × Y is given the
product metric d. Let (Z, dZ) be any metric space and suppose that f : Z → X × Y is a function.
Prove that f is continuous if and only if the compositions πX ◦ f and πY ◦ f are continuous.

Example 3.12. Define γ : [0, 1] → R2 by γ(t) = (cos(t), sin(t)). Assume both [0, 1] and R2 have
the euclidean metrics, γ is continuous since the projections cos(t) and sin(t) are continuous.

Example 3.13 (Torus knots).

The following lemma helps with proving that functions defined piecewise are continuous.

Lemma 3.14 (Gluing lemma). Suppose that (X, dX) is a metric space that that A,B ⊂ X with
X = A ∪ B. Assume that A, B are closed subsets of X. Suppose that (Z, dZ) is a metric space
that that f : A→ Z and g : B → Z are continuous and have the property that f(x) = g(x) for all
x ∈ A ∩B. Define f ∪ g : X → Z by

f ∪ g(x) =

{
f(x) x ∈ A
g(x) x ∈ B

.

Then f ∪ g is continuous.

Note that in the lemma, we are assuming that f : A→ Z and g : B → Z are continuous when we
consider A and B with the subspace metrics.

Proof. Note that f ∪ g is well-defined since f and g agree on A ∩ B. Since A and B are closed so
is A ∩ B. Let F ⊂ Z be a closed set. Observe that (f ∪ g)−1(F ) = f−1(F ) ∪ g−1(F ). Since f is
continuous f−1(F ) ⊂ A is a closed subset of A. Since A is a closed subset of X, VA = f−1(F ) is
also a closed subset of X. (Do you see why?) Similarly, VB = g−1(F ) is also a closed subset of X.
By DeMorgan’s Laws, (VA ∪ VB)C = V C

A ∩ V C
B . Since V C

A and V C
B are open and since the finite

intersection of open sets is open, V C
A ∩ V C

B is open. Thus, VA ∪ VB = (f ∪ g)−1(F ) is closed. Thus
the inverse image of closed sets is closed, and so (f ∪ g) is continuous. �

7



4. Homeomorphisms

Definition 4.1. Suppose that f : X × Y is a function between metric spaces. It is a homeomor-
phism if it is a bijection and both f and its inverse f−1 are continuous. (That is, a homeomorphism
is a bicontinuous bijection.)

Notice that the inverse of a homeomorphism is also a homeomorphism. If there is a homeomorphism
from X to Y we say that X and Y are homeomorphic. Being homeomorphic is an equivalence
relation on metric spaces.

Example 4.2. Suppose that X = [0, 1] and Y = [3, 8], both with the euclidean metric. Let
f : X → Y be defined by f(t) = 5t+ 3. Then f is a continuous bijection and its inverse f−1(s) =
(s− 3)/5 is also continuous. Thus f is a homeomorphism.

Example 4.3. Let A = {(x, y) ∈ R2 : 1 ≤ x2 + y2 ≤ 4}. Define h : A→ A by h(r, θ) = (r, θ+ 2πr)
where (r, θ) are the polar coordinates of a point in A. Then h is a homeomorphism of A to itself,

called a Dehn twist. See Figure 1 for a depiction of the effect of the Dehn twist h. Let ĥ : R2 → R2

be defined by

ĥ(x, y) =

{
h(x, y) (x, y) ∈ A
(x, y) (x, y) 6∈ A

.

Then ĥ : R2 → R2 is also homeomorphism by the gluing lemma.
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id h h2

h3 h10 h20

Figure 1. The Dehn twist h as well as some examples of its powers.

Example 4.4. Let S1 be the unit circle {(x, y) ∈ R2 : x2 + y2 = 1} and let Q = {(x, y) ∈ R2 :
max{|x|, |y|} ≤ 1} be the unit (hollow) square. For each point q ∈ Q, let ρ(q) be the point on S1 on
the ray emanating from the origin and passing through q. Then ρ : Q→ S1 is a homeomorphism.
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Example 4.5 (Stereographic Projection). Let S1 be the unit circle as in the previous example.
Let N = (0, 1) be its north pole. Let L be the line with equation y = −1 in R2. Note that L with
the euclidean metric is homeomorphic to R. Define ρ : S1 \ {N} → L as follows. Let x ∈ S1 \ {N}.
Let ρ(x) ∈ L be the point on L that lies on the ray emanating from N and passing through x.
Then ρ is a homeomorphism. In particular, R is homeomorphic to the result of removing a point
from a circle.

More generally, let Sn = {x ∈ Rn+1 : ||x|| = 1} and let N be its north pole. Then Sn \ {N} is
homeomorphic to Rn. The case when n = 2 can be obtained from the case n = 1 by rotating the
picture from the previous paragraph around the y-axis. Similarly, the statement for arbitrary n ≥ 2
can be obtained from the statement for n by rotating around an axis. Of special interest to us is
the fact that S3 \ {point} is homeomorphic to R3. We can alternatively phrase this by saying that
the 3-sphere S3 is obtained by adding a point “at infinity” to R3.

Definition 4.6. Suppose that X and Y are metric spaces and that f : X → Y is an injective
continuous function. Note that we can give f(X) ⊂ Y the subspace metric from Y . We say that f
is an embedding of X in Y if restricting the codomain of f to its range, makes f : X → f(X) a
homeomorphism. (That is an embedding is a homeomorphism onto its image.)

Example 4.7. Define f : [0, 1]→ R2 by f(t) = (t, t2) for all t ∈ [0, 1]. Then f is an embedding of
the unit interval into R2. The continuous function f : [0, 1]→ R2 defined by f(t) = (cos 2πt, sin 4πt)
is not an embedding because it is not injective. Finally, consider the image of the continuous
function shown in Figure 2. It is the image of f : (0, 5]→ R2 defined by

f(t) =



(t, sin(1/t)) t ∈ (0, 1]

(1, (2− t) sin(1) + 2(t− 1)) t ∈ (1, 2]

((3− t) + (−1)(t− 2), 2) t ∈ (2, 3]

(−1, 2(4− t)) t ∈ (3, 4]

(−(5− t), 0) t ∈ (4, 5]

This is injective and continuous, but not an embedding. To see that it is an embedding let p =
(0, 0) = f(5). In the interval (0, 5], an open ball of radius ε is the interval (5 − ε, 5], which is a
connected interval. On the other hand, in R2, no matter how small ε is the ball Bε(p) ∩ im(f) is
the union of infinitely many intervals. So we can believe (even if not rigorously prove right now)
that f is not a homeomorphism onto its image.
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Figure 2. A version of the topologists’ sine curve. Notice that as the curve comes
into the y-axis from the right, there are infinitely many oscillations.

Definition 4.8. A knot is either an embedding of S1 into S3 or into R3. We also sometimes refer
to the image of the embedding as a knot.

Although we do not explore them in this course, we note that we can discuss knots in all dimensions
by considering embeddings of Sk into Sn for n > k. The study of knotted S2s in S4 is a particularly
rich and active area of contemporary research.

We have defined a knot as an embedding of S1 in S3. This allows for so-called wild knots. Here
is an example, which we explain rather informally.

Example 4.9. Consider the box B = [−1, 1] × [−1, 1] × [−1, 1]. Let γB : [0, 1] → B be a path
from (0, 0,−1) to (0, 0,+1) and that forms a trefoil, as in the picture. Let Bn be the result of
scaling B by a factor of 1/2n and translating it a distance of 2(n − 1) along the z-axis. Let
γn(t) = 1

2nγ(2nt + 1/2 − 1/2n) be the same curve as γB except traversing it over the interval

[(2n−1− 1)/2n−1, (2n− 1)/2n] and shifted to lie in Bn. Let φ =
⋃
n∈N

γn and then construct a knot γ

in R3 by taking the union of γ(2t− 1) for t ∈ [0, 1/2] with an embeddeding of [1/2, 1] from (0, 0, 1)
to (0, 0, 0) having range disjoint from

⋃
Bn. See Figure 3.

5. Homotopy, Isotopy, and Knot Equivalence

For the remainder of the course we let I = [0, 1] ⊂ R with the Euclidean metric.

Definition 5.1. Suppose (X, d) is a metric pace. A path in X is a continuous function γ : I → X.
If p = γ(0) and q = γ(1), we say that γ is a path from p to q. If p = q, then γ is a loop or a loop
based at p. The metric space X is path-connected if there is a path between each pair of points.

Exercise 5.2. Let X be a metric space. For x, y ∈ X, define x ∼ y if and only if there is a path
in X from x to y. Prove that ∼ is an equivalence relation. The equivalence classes are called the
path components of X.
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Figure 3. An example of a wild knot. The boxes just help us describe the scaling
and translation.

There are examples of surjective paths in I × I, so we will often need to put more conditions on
our paths. Note that if γ(t) = (x1(t), x2(t), . . . , xn(t)) is a path in Rn (or some subset of Rn), its
derivative can be obtained by just taking the derivative of each of the coordinates.

Definition 5.3. If X ⊂ Rn, a path γ in X is:

• smooth if γ′(t) exists for all t and if ||γ′(t)|| 6= 0 for any t. This means that the one-sided
derivatives at 0 and 1 exist and are non-zero.
• piecewise smooth if there exist

t0 = 0 < t1 < t2 < . . . < tn = 1

such for each i ∈ {0, . . . , n − 1}, on the interval [ti, ti+1] the derivative γ′(t) exists and is
non-zero; at ti and ti+1 we use one-sided derivatives.
• piecewise linear if there exist

t0 = 0 < t1 < t2 < . . . < tn = 1

such for each i ∈ {0, . . . , n− 1}, on the interval [ti, ti+1], γ is linear. That is, the derivative
γ′(t) exists and is a non-zero constant vector; at ti and ti+1 we use one-sided derivatives.

Henceforth, we restrict our attention to tame knots.

Definition 5.4. A knot in R3 is tame if it is piecewise smooth or piecewise linear. A knot in S3

is tame if for any point p ∈ S3 not contained in the range of the knot, the result of stereographic
projection from p is a tame knot in R3.

As we’ve discussed, two different knots can represent the same knot type. How can we formalize
the notion of knot equivalence?

One natural method of formalizing it is by declaring two knots K ⊂ S3 and K ′ ⊂ S3 (thinking of
a knot as a subset of S3, rather than as a function) if and only if there exists a homeomorphism
h : S3 → S3 such that h(K) = K ′. (We say that such a homeomorphism h is a homeomorphism
of pairs and write h : (S3,K) → (S3,K ′).) The problem with this definition is that it makes a
knot always equivalent to its mirror image. To correct this, we consider orientations, unfortunately
a purely topological definition of orientation is beyond the scope of this course, so we allow ourselves
to use some calculus.
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Definition 5.5. Suppose that h : R3 → R3 is a homeomorphism. It is a diffeomorphism if all
partial derivatives of all orders exist for both h and h−1. A homeomorphism h : S3 → S3 is a
diffeomorphism if for all p ∈ S3, the composition of the restricted map f : S3 \{p} → S3 \{f(p)}
with stereographic projection from p is a diffeomorphism of R3.

Definition 5.6. Suppose that h : R3 → R3 is a diffeomorphism. Notice that for each p ∈ R3 we
can write h(p) = (h1(p), h2(p), h3(p)). Its derivative at a point p ∈ R3 is the matrix of partial
derivatives:

Dh(p) =


∂h1
∂x (p) ∂h1

∂y (p) ∂h1
∂z (p)

∂h2
∂x (p) ∂h2

∂y (p) ∂h2
∂z (p)

∂h3
∂x (p) ∂h3

∂y (p) ∂h3
∂z (p)


Suppose that h : R3 → R3 is a diffeomorphism and that p ∈ R3. At p, we choose coordinate
vectors ex, ey, ez pointing along the positive x, y, and z axes, respectively. Note that they form
a right-handed coordinate system. The vectors Dh(p)ex, Dh(p)ey, and Dh(p)ez are three linearly
independent vectors based at h(p). They form either a right-handed or left-handed coordinate
system. If they form a right handed system then h is orientation-preserving. If they form
a left-handed system, then Dh(p) is orientation-reversing. It is a fact that h is orientation
preserving if and only if detDh(p) > 0 and orientation-reversing if and only if detDh(p) < 0.
As we did with the definition of diffeomorphism we can extend the definitions of orientation-
preserving and orientation-reversing to S3 by using stereographic projection. We could then define
two knots K,K ′ ⊂ S3 to be equivalent if there is an orientation-preserving homeomorphism of pairs
(S3,K)→ (S3,K ′). This turns out to be a perfectly valid definition, although it does require that
we consider diffeomorphisms rather than just homeomorphisms. Unfortunately, it does not accord
with our intuition that two equivalent knots should be able to be moved within 3-space to coincide,
e.g. via moves that project to Reidemeister moves on a projection sphere. To get a definition along
those lines, we introduce homotopies and isotopies.

Definition 5.7. Suppose that X and Y are metrics spaces and that f, g : X → Y are continuous.
A homotopy from f to g is a continuous function

H : X × I → Y

such that for all x ∈ X, H(x, 0) = f(x) and H(x, 1) = g(x). If A ⊂ X, the homotopy is relative
to A if H(a, t) = f(a) for all a ∈ A and all t ∈ I. We often write Ht(x) in place of H(x, t). Note
that Ht : X → Y is a continuous function for all t ∈ I. If each Ht is an embedding then H is an
isotopy and we say that f is isotopic to g.

Exercise 5.8. Prove that the notion of being homotopic (or isotopic!) is an equivalence relation
on the set of continuous functions from X to Y .

Example 5.9. Let i : R3 → R3 be the identity map and let c : R3 → R3 be the constant map such
that c(x) = (0, 0, 0) for all x ∈ R3. Then i and c are homotopic. One such homotopy is given by
H(x, t) = (1− t)x for all x ∈ R3 and t ∈ I.

Definition 5.10. A metric space is contractible if there is a homotopy from the identity map
to a constant map. A map S1 → X is contractible if it is homotopic to a constant map. A
path-connected metric space is simply connected if every map S1 → X is contractible.

Notice that R3 is contractible.

Exercise 5.11. A contractible space is both path-connected and simply-connected.
12



Exercise 5.12. The 0-sphere S0 = {−1, 1} = {x ∈ R : x2 = 1} is not path-connected. (Hint: use
the Intermediate Value Theorem)

Theorem 5.13. The circle S1 = {(x, y) ∈ R2 : x2 + y2 = 1} is path-connected but not simply
connected.

Proof Sketch. We leave the fact that S1 is path-connected as an exercise (Hint: Use polar coor-
dinates). The proof that S1 is not simply connected will be addressed later, or possibly not at
all. �

Theorem 5.14. Every sphere Sn = {x ∈ Rn+1 : ||x|| = 1} is path connected and simply connected
for n ≥ 2.

Proof. We leave the fact that Sn is path-connected as an exercise. (Hint: Use stereographic pro-
jection to Rn.)

Suppose that γ : S1 → §n is a loop. Since n ≥ 2, it turns out that it is possible to homotope γ so
that there exists p ∈ Sn such that p 6∈ γ(S1). Let π : Sn \ {p} → Rn be stereographic projection.

Let H : Rn × I → Rn be a contraction of Rn. Define Ĥ(x, t) = π−1(H(π(γ(x)), t)). Then Ĥ is a
homotopy of γ to a constant map. Thus, γ is contractible. �

Returning to knots, it would now be tempting to define two knots (thought of as embeddings
S1 → S3 to be equivalent if and only there is an isotopy of one to the other. Unfortunately, this
would make every tame knot in S3 equivalent to every other tame knot.

Example 5.15. Suppose that K ⊂ S3 is a tame knot. Because it is tame, there is a 3-ball B ⊂ S3

intersecting K in an arc and with the property that if we crush B down to a point the resulting
knot is unknotted. The crushing of B defines an isotopy of K to an unknot.

The key to definining knot equivalence is to insist that the isotopy be defined knot just on the knot,
but also near the knot. We can do this by insisting that the isotopy itself be smooth or piecewise
linear, but we can also do it as follows:

Definition 5.16. Two links K, K ′ in S3 are equivalent if there is an isotopy H : S3 × I → S3

such that for all k ∈ K, H(k, 0) = k and H(k, 1) ∈ K ′.

Allan Hatcher proved the Smale Conjecture in 1983. One consequence is that our definition of
knot equivalence is logically equivalent to the definition involving orientation-preserving homeo-
morphisms of pairs. In 1989, Cameron Gordon and John Luecke proved that if K,K ′ ⊂ S3 are
knots and if there is an orientation-preserving homeomorphism h : S3 \K → S3 \K ′ then K and
K ′ are equivalent. That is, knots are determined by their complements. That, however, is not true
of links.

Example 5.17. Here are two links with homeomorphic complements.

6. Based loops and Fundamental Groups

(See the introduction to Chapter 1 and Section 1.1 of Hatcher’s Algebraic Topology. Available
online.)

Throughout this section, assume that (X, d) is a path-connected metric space.
13



Definition 6.1. Suppose that γ : I → X is a path such that γ(0) = γ(1) = p ∈ X. We say that γ
is a loop based at p. A based homotopy from γ to ψ is a map H : I × I → X such that:

(1) H(t, 0) = γ(t) for all t ∈ I.
(2) H(t, 1) = ψ(t) for all t ∈ I.
(3) H(0, s) = H(1, s) = p for all s ∈ I.

Exercise 6.2. If γ and ψ are both loops based at p, define γ ∼ ψ if and only if there is a based
homotopy from γ to ψ. Then ∼ is an equivalence relation on the set of based loops at p. We let
[γ] denote the equivalence class of γ. We let π(X, p) denote the set of equivalence classes of loops
based at p.

Definition 6.3. Suppose that γ and ψ are loops based at p. Define

γ · ψ(t) =

{
γ(2t) t ∈ [0, 1/2]

ψ(2t− 1) t ∈ [1/2, 1]

for all t ∈ I and

[γ][ψ] = [γ · ψ]

Theorem 6.4. As a binary operation on π(X, p), the operation · is well-defined and associative.

Definition 6.5. Let p : I → X be the constant function p(t) = p (where this second p is the
basepoint) for all t ∈ I. Let 1 = [p].

Theorem 6.6. Let γ be a loop based at p. Then [γ] · 1 = 1 · [γ] = [γ].

Proof. We’ll show that [γ] · 1 = [γ]. The proof of the other equality is similar. We must show that
γ · 1 is based homotopic to 1. Recall that for all t ∈ I:

γ · 1(t) =

{
γ(2t) t ∈ [0, 1/2]

p t ∈ [1/2, 1]

We think of this as following γ twice as fast as usual and then sitting at the basepoint p for half
the time. Our homotopy will slowly decrease the amount of time we sit at p, until we are there
only at time t = 1. Define

F (t, s) =

{
γ(2t(1− s) + ts) t ∈ [0, 1/(2− s)]
p t ∈ [1/(2− s), 1]

.

〈 Verify that F is a based homotopy from γ · 1 to γ 〉 �

Definition 6.7. Let γ be a loop based at p. Define

γ(t) = γ(1− t)

for all t ∈ I and

[γ]−1 = [γ].

Theorem 6.8. For every loop γ based at p, [γ]−1 is well-defined and

[γ][γ]−1 = [γ]−1 · [γ] = 1.

Corollary 6.9. π(X, p) is a group (called the fundamental group of X.)

Often all we care about from a group is its isomorphism type.
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Definition 6.10. Suppose that G and G′ are groups and that f : G → G′ is a function. Then f
is a homomorphism if for all a, b ∈ G

f(ab) = f(a)f(b).

f is an isomorphism if it is a homomorphism and a bijection. An isomorphism from a group to
itself is called an automorphism.

Theorem 6.11. Suppose that p, q ∈ X. The groups π(X, p) and π(X, q) are isomorphic.

Proof. Let α be a path from p to q. Suppose that γ is a loop based at p. Define

f(α) = α · γ · α,
and

f([α]) = [f(α)].

We claim that f : π(X, p)→ π(X, q) is a well-defined group isomorphism.

We prove it is well-defined, first. Suppose that γ ∼ ψ. Let F be a based homotopy from γ to ψ.
Define H : I × I → X by

H(t, s) =


α(3t) t ∈ [0, 1/3]

F (3t− 1, s) t ∈ [1/3, 2/3]

α(3t− 2) t ∈ [2/3, 1]

Then H is a based homotopy from f(γ) to f(ψ).

Now suppose that γ, ψ are two (not necessarily equivalent) loops based at p. Note that

f(γ) · f(ψ) ∼ α · γ · α · α · ψ · α
∼ α · γ · ψ · α
∼ f(γ · ψ).

Thus, f is a homomorphism.

To show it is an isomorphism, note that the function g : π(X, q)→ π(X, p) defined by

g([φ]) = [α · φ · α]

for all loops φ based at q is the inverse of f . �

Fundamental groups are homeomorphism invariants. We prove something stronger.

Theorem 6.12 (Functoriality of Fundamental Group). Suppose that X and Y are path-connected
metric spaces with p ∈ X. Suppose that there exists a map f : X → Y . Then there is a group
homomorphism

f∗ : π(X, p)→ π(Y, f(p))

such that if f is homotopic to g : X → Y via a homotopy relative to p, then f∗ = g∗. Furthermore
if h : Y → Z is a map, then

(h ◦ f)∗ = h∗ ◦ f∗.

Proof. Define f∗ as follows. Let γ be a loop in X based at p. Note that f ◦ γ is a loop in Y based
at f(p). For all t ∈ I, let f∗([γ]) = [f ◦ γ].

〈 Show that f∗ : π(X, p)→ π(Y, f(p)) is well-defined. 〉

〈 Show that (h ◦ f)∗ = h∗ ◦ f∗ .〉
15



Now suppose that g : X → Y is another map such that f is homotopic to g relative to p via a
homotopy H : X × I → Y . Let γ be a loop in X based at p. We want to show that f ◦ γ is
homotopic to g ◦ γ by a based homotopy. Define

H∗(t, s) = H(γ(t), s).

Notice that for all t ∈ I, H∗(t, 0) = H(γ(t), 0) = f(γ(t)) and H∗(t, 1) = H(γ(t), 1) = g(γ(t)). So
H∗ is a homotopy from f ◦ γ to g ◦ γ. Since H(p, s) = p for all s ∈ I, the homotopy H∗ is a based
homotopy. Thus, f∗ = g∗. �

Remark 6.13. The condition that the homotopy of f to g be relative to p is rather annoying.
If f(p) 6= g(p) then π(Y, f(p)) and π(Y, g(p)) are isomorphic, but unequal, groups. There is an
isomorphism between them that takes the image of f∗ to the image of g∗. If f(p) = g(p) but the
homotopy H moves p, then f∗ and g∗ may not be equal, but they will differ by what is called an
inner automorphism of π1(Y, f(p)).

Applying the following corollary to a homeomorphism and its inverse shows that fundamental
groups are topological invariants.

Corollary 6.14. Suppose that X and Y are path-connected metric spaces and that f : X → Y and
g : Y → X are maps such that g ◦ f is homotopic to the identity map on X and f ◦ g is homotopic
to the identity map on Y . Let p ∈ X and q ∈ Y . Then π(X, p) and π(Y, q) are isomorphic.

Proof. For simplicity, assume that there is a point p ∈ X and a homotopy of g ◦ f to the identity
idX on X that is relative to p. Also assume that there is a homotopy of g ◦ f to the identity idY
on Y that is relative to f(p). This assumption can be dropped at the expense of making the proof
more complicated.

By our hypotheses and the previous simplifying assumptions (g ◦ f)∗ = (idX)∗. Since (idX)∗ is the
identity map on π(X, p), we have

g∗ ◦ f∗ = (g ◦ f)∗ = id : π(X, p)→ π(X, p).

Similarly, f∗ ◦ g∗ = id : π(Y, f(p))→ π(Y, f(p)). Thus, f∗ and g∗ are inverses and so they are each
bijections. They are also each group homomorphisms, so they are group isomorphisms. �

Definition 6.15. Let L ⊂ S3 be a link and p ∈ S3 \L. The link group (or knot group if L is a
knot) is the group π(L) = π(S3 \L, p). Changing p does not change the isomorphism type of π(L).

Theorem 6.16. Suppose that L and L′ are equivalent links in S3. Then π(L) is isomorphic to
π(L′).

Proof. Let H be an isotopy of S3 taking L to L′. Then f : S3\L→ S3\L′ defined by f(x) = H(x, 1)
for all x is a homeomorphism. Since f ◦ f−1 aand f−1 ◦ f equal the identity maps on S3 \ L and
S3 \ L′ respectively, f∗ is a group isomorphism. �

It turns out that if we squeeze a space down onto a subspace, then the fundamental groups are
isomorphic. Here is how to make that precise.

Definition 6.17. Let X be a metric space and A ⊂ X. A homotopy F : X × I → A is a strong
deformation retraction if F (x, 1) ∈ A for all x ∈ X and F (a, s) = a for all a ∈ A and s ∈ I.

Theorem 6.18. Suppose that X is a metric space and that there is a deformation retraction from
X onto A ⊂ X. Let p ∈ A. Then π(X, p) is isomorphic to π(A, p).
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Proof. Let F be the deformation retraction. Notice that F (p, s) = p for all s ∈ I. Also observe
that if γ is a path in X based at p, then F (γ, 1) defined by F (γ(t), 1) for all t ∈ I is a path in
A for all t ∈ I. It is also based at p. Observe that if γ and γ′ are two based paths in X, then
F (γ · γ′, 1) = F (γ, 1) · F (γ′, 1).

Define f : π(X, p) → π(A, p) as follows. For [γ] ∈ π(X, p), set f([γ]) to be the equivalence class
of F (γ(t), 1). If paths γ and γ′ are homotopic in X via a based homotopy H, then considering
F (H(t, u), 1) is a based homotopy in A from F (γ, 1) to F (γ′, 1). Thus, f is well-defined. Conversely,
observe that if γ and γ′ are based paths in A with a based homotopy in A between them, then
that based homotopy is also a based homotopy in X. Thus, f is a bijection and also a group
homomorphism, so it is an isomorphism. �

6.1. The fundamental group of the circle. We take a bit of a detour to prove that π(S1, p) is
isomorphic to the additive group Z.

Definition 6.19. Suppose that X and X̃ are metric spaces and that p : X̃ → X is a map such

that for all x ∈ X, there exists an r > 0 such that for all x̃ ∈ p−1(x), there is an open set U (̃(x))
containing x̃ so that:

(1) For each x̃ ∈ p−1(x), the restriction of p to U(x̃) is a homeomorphism onto Br(x).
(2) p−1(Br(x)) =

⋃
x̃∈p−1(x)

U(x̃)

(3) If x̃1, x̃2 ∈ p−1(x) are distinct then U(x̃1) ∩ U(x̃2) = ∅.

Then we say that p : X̃ → X is a covering map and that X̃ is a covering space for X.

The next example is not very interesting, so generally we avoid it.

Example 6.20. Let X be any metric space and let X̃ be some number of disjoint copies of X.

Then the natural map from X̃ → X which is the identity on each component is a covering map.

Here is the main example we need for now

Example 6.21. Define p : R→ S1 by p(x) = (cos 2πx, sin 2πx). Then p is a covering map.

Theorem 6.22 (Homotopy Lifting Property). Let p : X̃ → X be a covering map between path
connected spaces. Let q ∈ X and q̃0 ∈ p−1(q). Suppose that γ is a loop in X based at q. Then there

exists a unique path γ̃ in X̃ such that γ̃(0) = q̃0 and γ = p ◦ γ̃. The path γ̃ is the lift of γ based at

q̃0. Furthermore, if ψ is another such loop with ψ̃ its lift based at q̃0, then γ̃ and ψ̃ are homotopic
relative to their endpoints if and only if γ and ψ are based homotopic.

Proof Sketch. For each t ∈ I, there exists rt > 0 such that Brt(γ(t)) ⊂ X is one of the open
balls appearing in the definition of covering map. By a certain property of the interval, called
“compactness”, there exist

0 = t0 < t1 < t2 < · · · < tn = 1

such that im γ ⊂
n⋃
i=0

Brti (γ(ti)). It is also possible (by a result called the Lebesgue Covering

Lemma) to subdivide I into small open intervals such that no more than two of the open intervals
overlap at a time and each of the intervals is contained in a unique Brti (γ(ti)). Number those
intervals consecutively as I0, I1, . . . , Im with 0 ∈ I0 and 1 ∈ Im.
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By the definition of covering map, there exists an open set U(q̃0) ⊂ X̃ that projects homeomor-
phically onto Bt0(γ(0)) and contains q̃0. Let p0 : U(q̃0) → Bt0(γ(0)) be the homeomorphism. Let
γ̃0 = p−1

0 ◦ γ|I0 . This produces the initial segment of our path. We then inductively define γ̃ on
each of the subintervals Ii by using the fact that the covering map is a homeomorphism.

The proof that if γ and ψ are based homotopic then their lifts are homotopic relative to their
endpoints is a 2-dimensional version of the previous argument. A homotopy between paths is a
map from I × I into X. We subdivide the square I × I into small little subsquares and inductively
define the lift of the homotopy across the subsquares. All that is needed is that I × I is also a
compact metric space.

Finally, suppose that γ̃ and ψ̃ are lifts of γ and ψ that are homotopic relative to their endpoints.

Let H̃ : I × I → X̃ be the homotopy. Then H : I × I → X defined by H = p ◦ H̃ is a based
homotopy of γ to ψ. �

Returning to the circle S1, for each n ∈ Z consider the based loop

γn(t) = (cos 2πnt, sin 2πnt)

for all t ∈ I. This is the loop that winds n times counter-clockwise around S1. (If n < 0, this
means it winds |n| times clockwise around S1.)

Corollary 6.23. Let q = (1, 0) ∈ S1. The group π(S1, q) is isomorphic to the additive group Z.
Each class of based loops has a unique representative γn for some n ∈ Z and there is an isomorphism
to Z taking [γn] to n.

Proof. Let p : R→ S1 be the covering map and observe that Z = p−1(q0). Set q̃0 = 0. The lift γ̃n
of γ based at q̃0 has its other endpoint at n. Consequently, if n 6= m, the based loops γn and γm
are not based homotopic.

Suppose that γ is any based loop in S1. Let γ̃ be its left. Recall that γ̃(0) = 0 and that γ̃(1) = n for

some n ∈ Z. Define H̃ : I×I → R by H̃(t, s) = (1−s)γ̃(t)+sγ̃n(t). Observe that H̃ is a homotopy
from γ̃ to γ̃n relative to its endpoints. Thus, γ and γn are based homotopic. Consequently, each
equivalence class in π(S1, q) is represented by a unique γn. Define f : π(S1, q)→ Z by f([γn]) = n.
It is easily verified that f is an isomorphism. �

Corollary 6.24. Let U ⊂ S3 be the unknot. Then π(U) is isomorphic to Z.

Proof Sketch. It turns out that S3 \ U is homeomorphic to D × S1 where D = {(x, y) ∈ R2 :
x2 + y2 < 1}. Let H((x, y, θ), t) = ((1 − t)(x, y), θ). This is a deformation retraction of the open
solid torus onto the core circle and so π(U) is isomorphic to π(S1, (1, 0)), which is isomorphic to
Z. �

In 1957, Papakyriakopolous proved that if a knot K ⊂ S3 has π(K) isomorphic to Z, then K is
the unknot. More generally, if two prime knots have isomorphic knot groups then they are either
equivalent or one is equivalent to the other’s mirror image. The square knot and the granny knot
have isomorphic groups, so the condition on primeness can’t be dropped.

Example 6.25. Prove that π(S1 × S1, q) is isomorphic to Z × Z. (Hint: find a covering map
R2 → S1 × S1.)

We conclude this section with a look at how the knot group we’ve defined here is related to the
combinatorial knot group we looked at earlier in the semester.
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Consider a diagram D of an oriented knot K. Consider the knot K as coinciding with the diagram
D as lying in a S2 ⊂ S3 except that at each crossing it dips a bit above the sphere and a bit below
the sphere. Pick a point q in S3 \ D. At each arc e of D take an oriented loop µe encircling e,
so that the orientation on K satisfies the right-hand rule. Choose a path αe from q to µe. Let
γe = αe · µe · αe. We give an informal argument that {[γe]} is a generating set for π(K).

To see this, let γ be any loop in S3 \K based at q. By a homotopy, we can assume it is transverse
to each region of the diagram D (i.e. not tangent, passing straight through). Imagine the images
of the loops γe as being made of thin metal rods while γ is made of 2-sided sticky tape. Homotope
γ so that any time it passes through a region of the diagram it sticks to a bit of K forming the
boundary of the diagram. A further homotopy makes the sticky tape wrap around the loops µe.
We then crush the stick tape to the rods αe. As we traverse γ, we then are traversing the loops γe
and γe.

We now examine the relations arising from crossings.

Exercise 6.26. Consider a crossing of D with a the oriented overstrand, b the incoming under-
strand, and c the outgoing understrand. Suppose that the crossing is right-handed. Draw pictures
to show that the loop γb · γa · γb is based homotopic to γc.

Our informal investigations lead us to suspect that the knot group π(K) is isomorphic to the
combinatorial knot group defined previously. Indeed this is the case, but giving a rigorous proof is
beyond the scope of this course and is best done using the VanKampen Theorem from Algebraic
Topology.

7. Path Metrics

Suppose that X ⊂ Rn has the property that any two points in X can be joined by a piecewise
smooth path.

Definition 7.1. The euclidean length of a piecewise-smooth path γ is

`(γ) =

1∫
0

||γ′(t)||dt.

This definition is inspired by approximating γ with line segments and measuring their length using
the Pythagorean theorem. We can use path lengths to define a metric. Ideally, we would just define
the distance between two points in X to be the length of the shortest path between them. The
next example shows that this is not always possible.

Example 7.2. Let X = R2 \ {(0, 0)} and let a = (−1, 0) and b = (0, 1). Then there is no shortest
path from a to b that lies in X.

In the definition below, we treat ±∞ as symbols that can be compared with real numbers in the
obvious way. We do not allow ourselves to do arithmetic with them as logical contradictions can
result.

Definition 7.3. Suppose that C ⊂ R. A lower bound for C is λ ∈ [−∞,∞] such that λ ≤ c for
all c ∈ C. Similarly an upper bound for C is µ ∈ [−∞,∞] such that c ≤ µ for all c ∈ C. The
infimum inf C of C is the greatest lower bound for C, that is λ ≤ inf C for every lower bound λ
for C. The supremum supC of C is the least upper bound for C, that is µ ≥ supC for every
upper bound µ for C.
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The following is a crucial theorem, due to Dedekind. It is logically equivalent to the statment that
every monotonic sequence in an interval converges.

Theorem 7.4. Suppose C ⊂ R. Then inf C and supC exist. Furthermore, if C 6= ∅ and there
exists an upper bound M ∈ R for C, then supC ∈ R. If C 6= ∅ and there exists a lower bound
m ∈ R for C, then inf C ∈ R.

Definition 7.5. Let X ⊂ Rn have the property that any two points can be joined by a piecewise
smooth path lying entirely in X. For x, y ∈ X, define dpath(x, y) = inf

γ
`(γ), where the infimum is

taken over all piecewise smooth paths joining x to y.

Theorem 7.6. dpath is a metric, called the path metric on X.

Proof. Let x, y ∈ X. Since the length of any piecewise smooth path between x and y is non-
negative, dpath(x, y) ≥ 0. If x = y, then the constant path is a path of length 0 from x to y, so
dpath(x, y) = 0 if x = y. We tackle the proof that if x 6= y, then dpath(x, y) > 0 last.

For x, y ∈ X, let P (x, y) be the set of all piecewise smooth paths from x to y. If γ ∈ P (x, y) then
the path γ defined by γ(t) = γ(1− t) for all t ∈ I is a path from y to x. Observe that `(γ) = `(γ).
Thus the set of lengths of paths from x to y is the equal to the set of lengths of paths from y to x
and so dpath(x, y) = dpath(y, x).

Suppose that x, y, z ∈ X. Consider a path γ ∈ P (x, y) and a path ψ ∈ P (y, z). Define

γ · ψ(t) =

{
γ(2t) t ∈ [0, 1/2]

ψ(2t− 1) t ∈ [1/2, 1]
.

Observe that γ · ψ ∈ P (x, z) and that `(γ · ψ) = `(γ) + `(ψ). Thus, d(x, z) ≤ `(γ) + `(ψ). This is
almost enough to prove the triangle inequality. We just have to deal with the infimum.

By the definition of infimum, for any ε > 0, there is a path γ ∈ P (x, y) such that `(γ) ≤ d(x, y)+ε/2.
Likewise, there exists a path ψ ∈ P (y, z) such that `(ψ) ≤ d(y, z) + ε/2. Thus, d(x, z) ≤ d(x, y) +
d(y, z) + ε, no matter what ε > 0 is. But since d(x, z) and d(x, y) and d(y, z) are all fixed numbers,
the only way this is possible is if d(x, z) ≤ d(x, y) + d(y, z).

Finally, we show that if x 6= y, then d(x, y) > 0. Let γ ∈ P (x, y). The key idea is that in Rn
the shortest distance between any two points is a straight line. We’ll prove that. Notice that the
function F : Rn → Rn defined by f(p) = p − x does not change distances. Another calculation
shows that a rotation about the origin of Rn does not change distances. Thus, we may assume that
x = (0, . . . , 0) and that y = (0, . . . , 0, yn) with yn > 0. Notice that the length of the line segment
betweeen x and y is yn. For simplicity, we’ll assume that the path γ is smooth, rather than just
piecewise smooth.

For each t ∈ I, γ(t) = (γ1(t), . . . , γn(t)). By standard facts from calculus:

`(γ) =
∫ 1

0

√
γ′1(t)2 + ·+ γ2

n(t) dt.

≥
∫ 1

0 |γ
′
n(t)| dt

≥ |
∫ 1

0 γ
′
n(t) dt

= γn(1)− γn(0)
= yn

.

Thus, not only is d(x, y) > 0, but it is at least the length of the line segment joining x to y. �

Before moving on, we make an aside to define another knot invariant. It is the subject of active
research.
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Definition 7.7. Let K ⊂ R3 be a knot. For p 6= q ∈ K, define δ(p, q) =
dpath(p,q)
d(p,q) , where dpath(p, q)

is the distance between p and q along K and d(p, q) is the euclidean distance. The distortion of
the knot K is δ(K) = supp6=q δ(p, q) and the piecewise smooth distortion of the knot type of
K is inf

K
δ(K) where the infimum is taken over all piecewise smooth representatives K of the knot

type.

In 1978 Mikhail Gromov defined distortion. He showed that the distortion of a loop is at least
π/2 is equal π/2 if and only if the loop is a round circle. Gromov asked if there were knot types
where the distortion of the knot type was arbitrarily large. Denne and Sullivan showed that if K
is nontrivial, then δ(K) ≥ 5π/3. In his undergraduate thesis (∼ 2011), John Pardon showed that
the torus knots can have distortion that is arbitrarily large. A few years ago, collaborators and I
adopted Pardon’s methods to use bridge number and another invariant “bridge distance” to give
lower bounds for distortion. One of the great things about Pardon’s paper is that he can work with
a more general class of knots then just piecewise smooth ones - the only thing that is required is
that they be “rectifiable” – that is, that length be a well-defined quantity.

Definition 7.8. The path metric on Sn for n ≥ 1 is called the spherical metric.

We can obtain other metrics by varying the construction. Here is an extremely important example.

Definition 7.9. Let Hn = Rn+ = {(x1, . . . , xn) ∈ Rn : xn > 0}. Define the hyperbolic length
`hyp(γ) of a piecewise smooth path γ to be

`hyp(γ) =

∫ 1

0

||γ′(t)||
xn(t)

dt

where xn(t) is the last coordinate of γ(t). The hyperbolic metric dhyp(a, b) between two points
a, b ∈ Hn is defined to be inf

γ
`hyp(γ) where the infimum is over all piecewise smooth points joining

p to q.

Exercise 7.10. Show that dhyp is a pseudometric on Hn.

In the remainder, we show that dhyp is a metric and that there is a geodesic (i.e. shortest path)
between any two points. We also give an explicit description of these geodesics.

Lemma 7.11. The following functions T : Hn → Hn are isometries:

• Horizontal translation: T (x1, . . . , xn) = (x1 + a1, x2 + a2, . . . , xn−1 + an−1, xn) for some
(a1, . . . , an−1) ∈ Rn−1.
• Dilation: T (x1, . . . , xn) = (λx1, λx2, . . . , λxn) for some λ > 0.
• Horizontal rotation: rotation around the line {(0, . . . , t) ∈ Hn : t > 0}.
• Sphere Inversion: T (x) = x/||x||2

Lemma 7.12. Let x = (c1, . . . , cn−1, a) and y = (c1, . . . , cn−1, b) be two points in Hn lying on the
same vertical line, with a < b. Let

γ(t) = (1− t)x+ ty = (c1, . . . , cn−1, (1− t)a+ tb)

for t ∈ [0, 1]. Then γ is a geodesic from x to y and any other geodesic between them has the same
image.

Exercise 7.13. Show that for the γ in the statement of the lemma `hyp(γ) = ln(b/a).
21



Proof of Lemma 7.12. Let ψ(t) = (x1(t), x2(t), . . . , xn(t)) be a path in Hn from x to y. Notice that

||ψ′(t)||
xn(t)

=
(x′1(t)2 + · · ·+ x′n−1(t)2 + x′n(t)2

xn(t)2

)1/2 ≥ (x′n(t)2

xn(t)2

)1/2
.

Since both sides are non-negative,

`(ψ) =

1∫
0

||ψ′(t)||
xn(t)

dt ≥
1∫

0

|x′n(t)|
xn(t)

dt.

If equality holds, ∫ 1

0

||ψ′(t)|| − |x′n(t)|
xn(t)

dt = 0

Observe that the integrand is nonnegative, by our previous work. Since ψ is piecewise smooth, the
integrand is piecewise continuous. Thus, except at finitely many points, ||ψ′(t)|| = |x′n(t)|. But
this means that, except at finitely many points, (x′1(t), . . . , x′n−1(t)) = (0, . . . , 0). Thus, except at
finitely many points, (x1(t), . . . , xn−1(t)) is constant. But ψ is continuous, so this would imply that
it is, in fact, constant. That is, if equality holds, then the image of ψ lies on the vertical line passing
through x and y.

Observe that

`hyp(ψ) ≥
1∫

0

|x′n(t)|
xn(t)

dt ≥
1∫

0

x′n(t)

xn(t)
dt = `hyp(γ).

Thus, γ is a geodesic from x to y. Furthermore, equality holds if and only if |x′n(t)| = x′n(t) for all
values of t where ψ is smooth. Since ψ is piecewise smooth, x′n(t) is piecewise continuous, so x′n is
non-negative except, possibly, at finitely many points. Since ψ is continuous, xn is non-decreasing.
Consequently, if `hyp(ψ) = `hyp(γ), then ψ has the same image as γ and does not backtrack. �

Theorem 7.14. Geodesics in Hn are portions of vertical lines and portions of circles perpendicular
to the plane Rn−1 = {(x1, . . . , xn−1, 0) ∈ Rn}. There is a unique hyperbolic geodesic between any
two distinct points of Hn.

Proof. Notice that if γ is a geodesic in Hn and if f is an isometry of Hn, then f ◦ γ is also a
geodesic in Hn. Let x, y ∈ Hn. We have already seen that if x and y lie on the same vertical line
then the line segment between them is the unique image of a geodesic between them. Suppose now
that x and y do not lie on the same vertical line. Let C be the half circle in Hn, with endpoints
on Rn−1, passing through them which and perpendicular to Rn−1. (Why is there such?) Recall
Sn−1 = {z ∈ Rn : ||z|| = 1}

Notice that horizontal translations, horizontal rotations, and dilations do not change whether a
path has an image that is a vertical line segment or a portion of a circle perpendicular to Rn−1.
Let p0 be the endpoint of C closest to x. Use horizontal translations to make p0 lie at the origin.
Use a horizontal rotation to ensure that C lies in the x1, xn-plane. Henceforth, we may assume
that n = 2. Apply the sphere inversion to C to obtain C ′. This takes the endpoint at the origin to
infinity and leaves the other endpoint of C fixed. We claim that C ′ is a vertical line. Let x′ and y′

be the images of x and y on C ′.

It is easier to show this proceeding the other way. Let L be a vertical line in H2 with one endpoint
P at (p, 0) for some 0 < p. The sphere inversion takes P to the point (1/p, 0). Let m = (1/2p, 0).
Parameterize L as (p, t) for t > 0. The sphere inversion converts it to the curve α(t) = 1

p2+t2
(p, t).

A straightforward calculation shows that the Euclidean distance from α(t) to m is equal to 1/2p,
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which is a constant. As t→∞, α(t) approaches (0, 0). Thus, α(t) is a parameterization of the half
circle with center m. Since sphere inversion is its own inverse, sphere inversion takes the half circle
with center (1/2p, 0) to L. Choosing p so that m is the center of C, we see that C ′ is a vertical
line. Thus, the geodesic from x′ to y′ lies on C ′ and so the geodesic from x to y lies on C. �

Exercise 7.15. Show that given a, a′, b, b′, c, c′ ∈ H2, there is a hyperbolic isometry taking a to a′,
b to b′, and c to c′. (Hint: Use the techniques in the previous proof)

8. Gluing

Gluing spaces together is a fundamental part of topology, although giving a formal definition is a
little tricky. It either requires abandoning metric spaces altogether or some somewhat finicky work
involving metric spaces. Since metric spaces are important in their own right, we choose the metric
space approach.

Let Z be a set and dZ : Z × Z → [0,∞] a function such that:

(1) dZ(a, a) = 0 for all a ∈ Z
(2) dZ(a, b) = dZ(b, a) for all a, b ∈ Z

Suppose that ∼ is an equivalence relation on Z such that each equivalence class has only finitely
many elements. For a, b ∈ Z, a chain from a to b is a sequence

a = z0, z
′
0, z1, z

′
1, . . . , zn, z

′
n = b

such that all zi, z
′
i ∈ Z and for each i, zi ∼ z′i. The length of the chain C is

`(C) =
∑

i = 1n−1dZ(z′i, zi+1)

We imagine the chain as a series of walks and teleportations. Going from zi to z′i is a teleportation
and from z′i to zi+1 is a walk. The length of the chain is the total distance of the walks. For
a, b ∈ Z, let d(a, b) = infC `(C) where the infimum is taken over all chains from a to b.

Theorem 8.1. The function d has the following properties:

(1) For all a ∈ Z, d(a, a) = 0
(2) For all a, b ∈ Z, d(a, b) = d(b, a)
(3) For all a, b, c ∈ Z, d(a, c) ≤ d(a, b) + d(b, c)

Proof. We prove only the triangle inequality. By the definition of infimum, for all ε > 0, there
exists a chain C(a, b) from a to b such that `(C(a, b)) ≤ d(a, b) + ε/2. Similarly, there exists a chain
C(b, c) from b to c such that `(C(b, c)) ≤ d(b, c) + ε/2. The chain C(a, b) is a sequence

a = z0, z
′
0, z1, z

′
1, . . . , zn, z

′
n = b

such that zi ∼ z′i for all i. The chain C(b, c) is a sequence

b = w0, w
′
0, w1, w

′
1, . . . , wm, w

′
m = c

Since zn ∼ z′n = w0 ∼ w′0, the sequence

a = z0, z
′
0, z1, z

′
1, . . . , zn, w

′
0, w1, w

′
1, . . . , w

′
m = c

is a chain from a to c. Its length is `(C(a, b)) + `(C(b, c)). Thus,

d(a, c) ≤ `(C(a, b)) + `(C(b, c)) = d(a, b) + d(b, c) + ε.

Since this is true for all ε > 0, d(a, c) ≤ d(a, b) + d(b, c). �
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Corollary 8.2. Suppose that Z is a set and dZ is as above. Suppose also that ∼ is an equivalence
relation on Z such that between any two points there is a chain of finite length. Define d as above
and let d([a], [b]) = d(a, b) for all [a], [b] ∈ Z/ ∼. Then d is a pseudometric on Z/ ∼.

Here is a special case of this construction. Suppose that (X, dX) and (Y, dY ) are metric spaces
with subspaces A ⊂ X and B ⊂ Y . Assume that either X ∩ Y = ∅ or (X, dX) = (Y, dY ). In the
latter case, suppose that A∩B = ∅. Suppose also that there is a homeomorphism h : A→ B. Let
Z = X ∪ Y . If X 6= Y and x ∈ X and y ∈ Y , let dZ(x, y) = dZ(y, x) =∞. Otherwise, let dZ(x, y)
equal either dX(x, y) or dY (x, y) depending on whether or not x, y ∈ X or x, y ∈ Y . Define ∼ on
Z by declaring a ∼ f(a) for all a ∈ A and then extending ∼ to be an equivalence relation on Z.
Let Z/ ∼ be the set of equivalence classes. Notice that between any two points there is a chain
of finite length and so the functon d defined above is a pseudometric on Z/ ∼. If X 6= Y , we let
X ∪h Y = Z/ ∼.

Example 8.3. Let Z = I × I. Let A = {(1/n, 0) : n ∈ N} and B = {(1/n, 1) : n ∈ N}. Define
h : A→ B by declaring h((1/n, 0)) = (1/n, 1) for all n ∈ N. Let Cn be the chain

(0, 0), (0, 0), (1/n, 0), (1/n, 1), (0, 1), (0, 1).

Then Cn is a chain of length 2/n from a = (0, 0) to b = (0, 1). Thus, d(a, b) = 0. Since a 6∼ b, d is
not a pseudometric on Z/ ∼.

Theorem 8.4. Let Z = [0, 2π]. Let A = {0} and B = {2π} and h(0) = 2π. Then d is a metric on
Z/ ∼ and Z/ ∼ is isometric to S1 (with the path metric).

Proof. For convenience, let dZ be the Euclidean metric on Z. Let [a], [b] ∈ Z/ ∼ be distinct.
Without loss of generality, we may assume that [a] = {a} and either [b] = {b} or [b] = {0, 2π}. Let

C : a, a, z1, z
′
1, . . . , zn, z

′
n = b

be a chain from a to b. As we are seeking to minimize the length of chains, we may as well assume
that there do not exist distinct i, j with zi ∼ zj . Suppose, first, that [b] = {0, 2π}. Then, for all
i < n, [zi] = {zi}. Thus, the chain is of the form:

a, a, z1, z1, . . . , zn−1, zn−1, zn, z
′
n = b

Its length is
dZ(a, z1) + dZ(z1, z2) + d(z2, z3) + · · ·+ dZ(zn−1, zn) ≥ dZ(a, zn).

Thus, d([a], {0, 2π}) = min{dZ(a, 0), dZ(a, 2π)}.

A similar argument shows that if [b] = {b}, then d([a], [b]) = min{dZ(a, 0) + dZ(2π, b), dZ(a, 2π) +
dZ(0, b)}. In particular, d is a metric on Z/ ∼.

Define f : Z/ ∼→ S1 by f([a]) = (cos a, sin a). Since cos and sin are 2π-periodic, f is well-defined.
Standard trigonmetric facts show it is a bijection, as well. To see that f is an isometry, recall that
if two points on the circle are separated by an angle of θ ≤ π, then they are distance θ apart on
the circle. �

Exercise 8.5. Let Q be a parallelogram in R3. Let T be the result of gluing opposite sides together,
without a twist. Then T is homeomorphic to S1 × S1.

Example 8.6. Let K ⊂ S3 be a tame knot. For small enough r > 0, the subspace Nr(K) =

{x ∈ S3 : d(x,K) ≤ r} is homeomorphic to V = D2 × S1. Let V̊ = {x ∈ S3 : d(x, k) < r}. The

exterior of K is X(K) = S3 \ V̊ . The boundary ∂X(K) is the torus X(K) ∩ Nr(K). Choose
a homeomorphism h : ∂V → ∂X(K). We say that the space M(K,h) = V ∪h X(K) is obtained
by Dehn surgery on K. There is one choice of h such that V ∪h X(K) = S3, but in almost all
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other cases M(K,h) is not homeomorphic to S3, but is instead some other 3-dimensional space.
Lickorish and Wallace proved in the 1960s that every 3-dimensional space of a certain fairly generic
type can be obtained by Dehn surgeries on the components of a link.

Example 8.7. For some g ≥ 0, let Γg be a graph in R2 ⊂ R3 consisting of a single vertex and
g loops. Let Hg = {x ∈ R3 : d(x,Γg) ≤ r} for some small value of r > 0. Hg is called a genus
g handlebody. Its boundary is the set of points where equality holds. Let H ′g be another copy
of Hg. Choose a homeomorphism h : ∂Hg → ∂Hg. Then M(g, h) = Hg ∪h H ′g is a 3-dimensional
space. Every 3-dimensional space of a certain fairly generic type can be obtained this way for some
choice of g and h.
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