Homomaphisms of Groups
Motivation Ex

$$
D_{4}= \pm \operatorname{son}(\square)
$$

Def If G, G^{\prime} are groups and if $h: G \rightarrow G^{\prime}$ is function, then h is a homomorphism if $\forall a, b \in G$ $h(a b)=h(a) h_{\uparrow}(b)$

$$
\operatorname{in}_{G} \quad \text { in } G^{\prime}
$$

Ex $h: \mathbb{Z} \rightarrow \mathbb{Z} / 5 \mathbb{Z}$

$$
\begin{aligned}
h(a) & =a \bmod 5 \\
h(10+29) & =h(39) \\
& =4(\bmod 5) \\
& =h(10)+h(29) \\
& =0+4(\bmod 5)
\end{aligned}
$$

E_{y}

$$
\begin{aligned}
& \text { G }=\left\{\begin{array}{l}
0,2,4,6, \ldots\} \\
-2,-4, \ldots
\end{array}\right\} \\
& G^{\prime}=\mathbb{Z} \\
& f: G^{\prime} \rightarrow \mathbb{Z} \\
& f(a)=2 a \\
& 0 \rightarrow 0 \\
& 2 \rightarrow 4 \text { etc. } \\
& \varphi \rightarrow 8 \text { a }
\end{aligned}
$$

this is a homorphism.

By

$$
\begin{aligned}
& D_{3}=I \operatorname{som}(\Delta) \\
& D_{6}=1 \operatorname{som}(\Delta)
\end{aligned}
$$

Ans sum. of D extends to a sum. o \triangle,so this defines a homaphisen

$$
D_{3} \rightarrow D_{6}
$$

Ex $B_{n}=\{$ braids on n-starab $\}$
define $h: B_{n} \rightarrow B_{n-1}$ by deletion a stroud
Ex $n=4$

Ex Pure braidgroup
$P B_{n}=\{n$-braids weve the ;thatrond connects
the ith startign ${ }^{t}$ t the ith entingic\}

Ex Homomaphism from $\mathrm{B}_{n} \rightarrow$ Permutains f n pts $=S_{n}$

$P B_{n}=\left\{\beta \in B_{n} \mid\right.$

$$
h(\beta)=\psi\}
$$

Ex (Sophisticated)
Recall $F_{2}=\left\{\right.$ words in $\left.\left\{a, b, a^{-1}, b^{-1}\right\}\right\}$
w/ und $d q^{-1} \sim$
$\sim q^{-1} \alpha \dot{\sim} \sim$
$\sim b b^{-1}$ \qquad
$\sim b^{\prime} b \sim$
oparation is concatenation

$$
S L_{2}(\mathbb{P})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a d-b c=\mathcal{I}\right\}
$$

Define $h(a)=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$

$$
\begin{gathered}
h(b)=\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right) \\
h\left(a b a^{2}\right)=h(b)=h(a) h(b) h(a)^{2}
\end{gathered}
$$

This isan injectie homaphism.

Ex $D_{6}=$

Def $h: F_{2} \rightarrow D_{6}$
by dedain $h(a)=R_{60^{\circ}}$

$$
n(6)=V
$$

I extent h acrose words so $h\left(a b a^{2}\right)=R_{60^{\circ}} \cup R_{60^{\circ}}^{2} \in D_{6}$
This is sujectie b/c eveny demat $f \overline{P_{6}}$ is a combination f $R_{6^{\circ}}$ and V

Ex

\xrightarrow{H}

\xrightarrow{v}

$$
\begin{aligned}
& \text { so } \\
& H=R_{60}^{3} \cdot V
\end{aligned}
$$

Notice shat

$$
\begin{array}{rlrl}
h(a) & =R_{60} & h(b) & =V \\
h\left(a^{6}\right) & =R_{60}^{6} & h\left(b^{2}\right) & =v^{2} \\
& =11 & & =11
\end{array}
$$

$$
h(\underset{\text { ba ba }}{ })=\underbrace{V R_{6 r} \vee R_{60}}_{\text {rotation }}
$$

$\xrightarrow{R_{60}}$

$\xrightarrow{\checkmark}$

$\xrightarrow{\checkmark}$

FACT
If ω is a word :n $\left\{a, b, a^{-1}, b^{-1}\right\}$ and if

$$
h(u)=1 \in D_{6}
$$

then ω is the combination of $a a^{-1}, a^{-1} a, b b^{-1}, b^{-1} b, a^{6}, b^{2}, b a b a$
Upshot

$$
\left.D_{6}=I \operatorname{som} C I\right)
$$

is generated by $a, b \quad\left(=R_{60}, v\right)$ I has relations a^{6}, b^{2}, baba

Geoup presert ations

$$
A=\text { alphabat } \quad \text { Ex }\{a, b\}
$$

$\left\{\right.$ wods in $\left.A \cup A^{-1}\right\}$ Ex $a b^{2} a^{-1} b^{3}$
$R \subset\{$ words $\}$ Ex a^{6}, b^{2} baba $T_{\text {relatinc }}$
Defiea group:
elenantsare words w/ concellations allowed \& opeation is concateration

$$
\begin{aligned}
& \text { Candlatims } \sim \operatorname{maa}^{-1} \sim \sim=\omega d d^{-1} \sim \\
& \cdots a^{-1} a \sim=m \sigma^{-1} \alpha \sim \\
& \cdots b^{-1} b \sim=m b^{\prime} \delta m \\
& \sim 6 b^{-1} \sim=\sim 6 \text { 的 } \sim \\
& \forall r \in R
\end{aligned}
$$

Mn Frmm $=m$ KMm
$\sim \sim p^{-1}=\sim r^{n} \sim$
E_{x}

$$
\begin{aligned}
& A=\{a, b\} \\
& R=\left\{a^{6}, b^{2}, b a b a\right\}
\end{aligned}
$$

an exandectan
elenet? f grap is

$$
\begin{aligned}
& a b^{5} a^{8} b a^{7} b a b^{3} \\
= & a b^{2} b^{6} b x^{8} a^{2} b \phi^{8} a b a b^{2} b \\
= & a b a^{2} b a b a b \\
= & a b a^{2} b
\end{aligned}
$$

Grap is dunded $\langle A \mid R\rangle$
Fadt Grap
7 bisectice
$\left\langle a, b \mid a^{c}, b^{2}, b a b a\right\rangle$ is isomonphic to D_{6}
We sasthent $\langle a, b| a, b, b^{2}$, babab is a presultion for D_{6}

