Groups from Georretivy/Top. POV
Def A grap is a set G Raway of combining elements of G, that s a function $G \times G \rightarrow G$

$$
a b \rightarrow a b
$$

s.t.
(1) $\forall a, b \in G \quad a b \in G$
(2) (Identy) $\exists \mathbb{1} \in G$ s.t. $\forall a \in G \quad \mathbb{1} \cdot a=a \mathbb{1}=a$
(3) (Inversen) $\forall a \in G \quad \exists a^{-1} \in G$

$$
\text { s.t } a a^{-1}=a^{-1} a=\mathbb{1}
$$

(4)

$$
\begin{aligned}
& \text { (Associative) } \\
& \forall a, b, c \in G \\
& a(b c)=(a b) c=a b c
\end{aligned}
$$

Usually $a b \neq b a$ (uscelly not commultire)

ExAmples
(1) $\mathbb{Z}=\{\ldots,-3,-2,-1,0,2,2,3, \ldots\}$ operation t

- If $a, b \in \mathbb{Z} \quad a+b \in \mathbb{Z}$
- $\forall a \in \mathbb{Z} a+0=0+a=a$ so O is the identity
- $\left.\begin{array}{l}a+(-a)=0 \\ (-a)+a=0\end{array}\right\} \forall a \in \mathbb{Z}$ so every $a \in \mathbb{Z}$ has an incuse -a.
- Assoc. $\forall a, b, c \in \mathbb{Z}$

$$
a+(b+c)=(a+b)+c
$$

Inlaited Fact.
(2) Multiplication

$$
G=\mathbb{R}(\operatorname{val} \# s)
$$

mult. . is theopuation.

$$
\begin{aligned}
\rightarrow & \forall a, b \in \mathbb{R} \quad a \cdot b \in \mathbb{R} \\
\rightarrow & \forall a \in \mathbb{R} \quad 1 \cdot a=a \cdot 1=a \\
\rightarrow & \forall a \in \mathbb{R} \\
& a \cdot\left(\frac{1}{a}\right)=\left(\frac{1}{a}\right) \cdot a=1
\end{aligned}
$$

What about $a=0$??
O doesnot houra multiplicatice inverse so \mathbb{R} wl is not a glap.
(3) $\mathbb{R} \backslash\{\circ\}$ mult. as leopeation is a glap.
(3) \mathbb{Z} / \mathbb{Z} modlaraithmetic is a grop ω operation t
(4)

$$
\begin{aligned}
& \mathbb{Z} / s \mathbb{Z} \times \mathbb{Z} / 7 \mathbb{Z} \\
=\{(a, b) & \left.\begin{array}{l}
a \in \mathbb{Z} / s z \\
b \in \mathbb{Z} / 7 \mathbb{Z}
\end{array}\right\}
\end{aligned}
$$

grapoperation is +

$$
(a, b)+\left(a^{\prime}, b^{\prime}\right)=\left(a+a^{\prime}, b+b^{\prime}\right)
$$

$\bmod 5 \bmod 7$
(5) X is a set

$$
\operatorname{Perm}(x)=\{f: x \rightarrow x \mid
$$

f is a bijection $\}$
operation is function composition
\rightarrow Recall if $f, g: x \rightarrow x$ ave bijectimes then $f \circ g: x \rightarrow x$
is a bijection
\rightarrow The identity is id: $x \rightarrow x$
define by id $i x)=x \quad \forall x \in X$
\rightarrow Inverse

- Associntie

Ex $G L_{2} \mathbb{R}=\left\{\left(\begin{array}{ll}a & b \\ c & a\end{array}\right) \left\lvert\, \begin{array}{l}a b b, c, d \in \mathbb{R} \\ a d-b c\end{array}\right.\right.$
identits is $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
inveres of ($\left(\begin{array}{ll}a & b \\ c & a\end{array}\right)$
is $\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$
(6)

$$
\begin{aligned}
& I \operatorname{son}\left(\mathbb{R}^{2}\right) \\
& =\left\{\begin{array}{l}
f:\left.\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}\right|_{\substack{\text { is a bijection } \\
\text { aid } \\
\forall a, b \in \mathbb{R}^{2}}} \\
\\
d(a, b)==(f(a), f(b))
\end{array}\right.
\end{aligned}
$$

Ex transhtion

$$
f(x, y)=(x+7, y-\pi)
$$

rotations (1)
rellections ${ }^{3}$

$\operatorname{Isom}\left(\mathbb{R}^{2}\right)$ is a grap the opleration is composition
\Rightarrow Associative
let's suppox $g_{2} f \in I \operatorname{son}\left(\mathbb{R}^{2}\right)$
$b / c g$ is an isom

$$
\begin{aligned}
& a, b \in \mathbb{R}^{2} \xlongequal{d(a, b)} \\
&=d(g(a), g(b)) \\
&=d(f(g(a)), f(g(b)) \\
&=d(f \circ g(a), f \circ g(b))
\end{aligned}
$$

bic

$$
\begin{aligned}
& f^{\prime s} \text { issom } \tilde{f}^{x}, \widetilde{f^{\prime}(a)},{ }^{y} \\
& d(a, b)=d x, y \\
& d\left(f^{\prime}(x), f^{\prime}(y)\right)=d(x, y) \in R^{2}
\end{aligned}
$$

(7) Braid group B_{n} on n-stonts
$n=4$

Q: whet IS THE inverse?
operation: stacking
(8) Free grope

$$
\begin{aligned}
\text { Alphabet }= & \{a, b, c\}=A \text { dost } \\
& \left\{a^{-1}, b^{-1},-1\right\}=A^{-1}
\end{aligned}
$$

A word in $A \cup A^{\text {r }}$ is a sequence of symbles

$$
a b b c c^{-1} b^{-1} a a a b c^{-1} b a^{-1} a^{-1}
$$

$$
=a b^{2} c c^{-1} b^{-1} a^{3} b c^{-1} b a^{-2}
$$

let $\nu=\left\{\right.$ words : $\left.-A \cup A^{-1}\right\}$ operation is concatenation

$$
\begin{aligned}
& \left(a b c a^{-1}\right)\left(b c^{-1} b a^{3}\right) \\
& =a b c a^{-1} b c^{-1} b a^{3}
\end{aligned}
$$

Two words are equivalent if we they are related by inserting and deleting
$x x^{-1}$ or $x^{-1} x$ for $x \in A$
The empty ward is $v \frac{\mathbb{1}}{}$.
Working of the quotient set (under the equiv. relation)
we have a glop F_{n} if $n=$ \#qel'ts of A

Ex $A=\{a, b, c\}$

$$
\underbrace{a b c c^{-K} b a}_{\sigma}=\underbrace{a b^{2} a}_{\substack{\text { differet } \\ \text { wods }}} \text { in } F_{n}
$$

but tec some d't $\& F_{n}$

$$
\begin{aligned}
& \left(a b^{5} a c^{-3}\right)\left(c^{4} a^{-1} b\right) \\
& =a b^{5} a c^{-3} c^{4} a^{-1} b \\
& =a b^{5} a c a^{-1} b
\end{aligned}
$$

F_{n} is a grap idatits is Il inverse of a ward is thesamelettovs in opp. order ul inverses

$$
\begin{aligned}
(a b c)^{-1} & =c^{-1} b^{-1} a^{-1} b / c \\
(a b c)\left(c^{-1} b^{-1} a^{-1}\right) & =\alpha) d \phi q^{-1} b^{-1} q^{1} \\
& =\mathbb{I} .
\end{aligned}
$$

