Conwag's Thearen for Rational Tangles
bused an
Kauffmarn-Lambropoulou (2004)

Def: A rational tangle diagram (RTD) is a tangle diagram obtained from $\underset{\text { co-tanges }}{\text { by }}$ twisting it and then altanatey twisting the bottom endpts then the right endpts some odd \# of times in total. We also allowarslves to start with the ∞ tangle $)($ and alternate hariz., then vertically on even $\#$ of times. So we get one of two templates:
odd case

even case

The numbers $c_{1}, c_{2}, \ldots, c_{n}$ indicate the number of crossings in each twist box.
In what follows we use the following conventions

$$
\begin{aligned}
& \underbrace{\chi \angle C \cdots N_{n}}_{n}=\sqrt[n]{2 \sim \cdots, \ldots}=\sqrt[n]{n}
\end{aligned}
$$

Def The Conway notation for RTDs orth previous page is $\left[c_{1}, c_{2}, \ldots, c_{n}\right]$. The Conway number for such on RTD is then the rational \#:

$$
c_{n}+\frac{1}{c_{n-1}+\frac{1}{c_{n-2}+c_{+}+\frac{1}{c_{1}}}}
$$

Ex

Convag notation: $[5,-3,-4]$
Conway number: $-4+\frac{1}{-3+\frac{1}{5}}=-4-\frac{15}{14}=-5 \frac{1}{14}$
Fact 1: Every rational number has a continued fraction expansion

Ex

$$
\begin{aligned}
\frac{39}{17} & =2+\frac{5}{17}=2+\frac{1}{17 / 5}=2+\frac{1}{3+\frac{2}{5}} \\
& =2+\frac{1}{3+\frac{1}{5 / 2}}=2+\frac{1}{3+\frac{1}{2+\frac{1}{2}}}
\end{aligned}
$$

Thus, for every rational \# r there is at least one RTD w/ Convey \# r.

Fact 2: Every rational \# has a unique continued fraction expansion $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ s.t. n is cold and all a_{i} are non-zewound han the same sign.
proof Suppose $r \in \mathbb{Q}$ has cf. expansions $\left[a_{1}, \ldots, a_{n}\right]$ and $\left[b_{1}, \ldots, b_{m}\right]$ w/ all a_{i} of same sign and all b_{j} of the sane sign and both n, m odd and no a_{i}, b_{j} equal to 0 .
WLOG, Assume $n \leq m$. Notice

$$
r=a_{n}+\frac{1}{a_{n-1}+\cdots+\frac{1}{a_{1}}}=b_{m}+\frac{1}{b_{m-1}+\cdots+\frac{1}{b_{1}}}
$$

If all $a_{i}>0$ ard $n \geqslant 2,0<\frac{1}{a_{n-1}+\frac{1}{a_{1}}} \leqslant \frac{1}{a_{n-1}}<1$
Thus, if all $a_{i}>0$, then $r \in\left(a_{n}, a_{n}+1\right)$.
If all $a_{i}<0$, then $r \in\left(a_{n}-1, a_{n}\right]$.
Similar results hide for the b_{j} so all the a_{i} and b_{j} hare the same sign. Furtlewneve, $a_{n}=b_{m}$.
The reset follows by induction. Is
Theorem (Conway)
Two RTD represent equivalent tangles iff their Conway numbers are equal.

We given proof due to Kauffiman and Lambropoulou from 2004 .

Def If D is a RTD, we let -D denote te same diagram but with all crossings reversed.
Prop If Dhas Conway notation
$\left[c_{1}, \ldots, c_{n}\right]$ then-D has Conway rotation $\left[-c_{1}, \ldots,-c_{n}\right]$.
pf Changing the crossings: n produces $\rangle-c_{k}$.
Def If D is a RTD let $\frac{1}{D}$ dentate the diagram obtained by reflecting like so

D

\%

Prop $-\frac{1}{D}$ is the diagram obtained by rotating D 90° to the left.
pf on next page.
pf Induct on n.
Base Case $n=1$

Inductive step

Changing crossings then gives the voluted version
doganal affect

Def For a continual fraction $\left[c_{1}, c_{2}, \ldots, c_{n}\right]$ let $I=\max \left\{i \mid c_{i}\right.$ has a different or 1 sign from $c_{i-1} \xi^{\text {or } 1}$
if maxdosn't exist.
Let $S=\left|c_{1}\right|+\cdots+\left|c_{n}\right|$
Define $C\left(\left[c_{1}, \ldots, c_{n}\right]\right)=(I, S)$
and compare lexicographically $(e . g . \quad(5,10)<(6,2))$
Prop Suppose that D is a RTD s.t. out of all RTD equivalent to D, the complexity $c\left(\left[c_{1}, \ldots, c_{n}\right]\right)$ is minimized, where $\left[c_{1}, \ldots, c_{n}\right]$ is the Conway notation for D. Then all C_{i} have the sane sign.
pf Suppose not. Then $I>1$. For convenience, set $i=I$. If $c_{i}<0$, replace D with $-D_{s}$
So WLOG, assume $c_{i}>0$ and $c_{i-1}<0$
For convenience, weill also assume i is even
We hae the following picture

The tangle T is the RTD U/ Conway notation

$$
\left[C_{1}, C_{2}, \ldots, C_{i-2}\right]
$$

all crossing C; for $j>i$ in here

Observe this is a RTD w/ Conway notation $\left[-c_{1},-c_{2}, \ldots,-c_{i-2},-\left(c_{i-1}+1\right), 1, c_{i}-1, c_{i+1}, \ldots, c_{n}\right]$

The $\max k$ sit.
C_{K-1} and C_{k} have different
Signs is still I
but S has decreased by 1 since $c_{i-1}<0$ and $c_{i}>0$
This contradicts or choice of D to Minimize complexity $\$$
Now assume $c_{i-1}=-1$.

This last tangle has Conway notation $\left[-c_{1}, \ldots, c_{i-2}+1, c_{i}-1, c_{i+1}, \ldots, c_{n}\right]$ since i and n are k th odd.
So I has decreased by 1. This contardicts ouchoice of RTD

Important observation: Notice that in the proof when we convert $\left[c_{1}, \ldots, c_{n}\right]$ to $\left[-c_{1}, \ldots,-c_{i-1}, 1, c_{i}-1, c_{i+1}, \ldots, c_{n}\right]$ or $\left[-c_{1}, \ldots,-C_{i-2}+1, c_{i}-1, C_{i+1}, \ldots, c_{n}\right]$ the associated Conway number is unchanged
Conwags Theorem Part (A)
If RTD T_{1} and RTD T_{2} have the same Conway numbu then they are eqvivalat.
pf By the previous lemma, we mag assume T_{1} and T_{2} have Conway notations $\left[a_{1}, \ldots, a_{n}\right]$ and $\left[b_{1}, \ldots, b_{m}\right]$ with all a_{i} of the same sign and all b_{j} of the samesign. If n (sag) is even and $a_{1} \geqslant 2$, convert
so that

into

$\left[a_{1}, \ldots, a_{n}\right]$ becons $\left[1, a_{1}-1, \ldots, a_{n}\right]$.

If n is even and $a_{1}=1$ then rewrite as

this converts $\left[a_{1}, \ldots, a_{n}\right]$ into either $\left[a_{2}+1, a_{3}, \ldots, a_{n}\right]$. Note that $a_{2}>0$ by hypothesis. Similar arguments show that we magarsome not only that all a_{i} hare the same sign and all b_{j} hare the same sign, butalso that n and mare old. Inwhich case since the Conway numbusae the same, $n=m$ and $a_{1}=b_{1}, a_{2}=b_{2}, \ldots, a_{n}=b_{n}$. In which case $T_{1}=T_{2}$ as desired.

We now prove
Conway's them Part B
If T_{1} and T_{2} are RIDs that are eqvivalat then Heir Conway numbers are the same.

Def Given a 2 -strand tangle

a \mathbb{Z}-coloring is an assisnnect y an integu to each strand s.t. at every crossing if the colas are x, y, z like so x / \backslash_{z} then $2 x-y-z=0$
Observe that fora twist box if we the entry strands are colored a, b then the coloring can be extended to all strands in th twist box, so c, d exist and are complete' determined by a, b. By proceeding one twist box at a time if T is a rational tangle diagram then given $a, b \in \mathbb{Z} \exists a \mathbb{Z}$-coloring of T w/ top two strands colored a, b. Let c, d be the colors of the bottom two strands. unless $T=\frown$

Let $M(T)(a, b)=\left(\begin{array}{ll}a & b \\ c & a\end{array}\right)$ be the ansociated matrix.
Lemma for such a matrix $M(T) E a, b)=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ we have $a+d=b+c$
Proof It's true for $)$ (and $=$. Suppose its true for all RTD with k crossings and that D is a $R T D$ w/ $k+1$ crossings

$O R$

By hypothesis, in the 4 cases we hae

$$
\begin{aligned}
& a+x=d+c, \quad a+b=x+c, \\
& a+c=b+x, \text { ar } a+x=b+d
\end{aligned}
$$

Using the crossing eqn. We conclude in each cars that $a+d=b+c$.

Lemma If $M(T)(a, b)=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ then $\forall n, k \in \mathbb{Z}$ there is a coloring s.t. $\left(\begin{array}{ll}n a+k & n b+k \\ n c+k & n d+k\end{array}\right)$ is a matrix for a valid \mathbb{Z}-coloring of T.
Pf Scaling a coloring is a coloring A adding two colours is a coloring.
Def The coloringratio for

$$
f=\frac{b-a}{b-d}
$$

\sim_{c}^{a} is

Lemma f depends only on T. pf Consider the coloring of T Call it C. Absence that

Special Con Define $f=0$ for \curvearrowleft b/c that's what veg get

In particular, $d=(b-a) \delta+a$. This,

$$
\begin{aligned}
\frac{b-a}{b-d}=\frac{b-a}{b-((b-a) 8+a)} & =\frac{(b-a)(1-0)}{(b-a)(1-8)} \\
& =\frac{1-0}{1-8} .
\end{aligned}
$$

Thus, f dos nt depend on a, b so we write $f=f(T)$.
Corday If T_{1} is equivalent to T_{2} (both RTD) then $f\left(T_{1}\right)=f\left(T_{2}\right)$.
Pf a, b, c, d unchanged by Reidemeista mouse \& f dos not depend on the specific coloring. II

Thus, if we show $f(T)$ is equal to the Conway number, then will know that aug two RTD that are equivalat hor the same Conuag \# since they have the sone value for f

Note for $)(f=\infty$ and for $\asymp f$ is defined tube 0 .

Prop If T is a RTD then $f(T)$ is the Conway number.
pf We induct on crossing number.
BasCases) (and \simeq by definition!
Inductive

Assume S has Conway notation $\left[s_{1}, \ldots, s_{n}\right]$. Then Thus Conway notation

$$
\left[S_{1}, \ldots, S_{n}+1\right] .
$$

pf Base Cases.

$$
\underbrace{z_{1}} z_{2}^{z_{3}} \cdots z_{n} \ll n+1 \text { crossings }
$$

Notice
so a coloring has

$$
d=(n+1) a-n c
$$

$$
\begin{array}{r}
(n-1) c-2 n c \\
=-n c-c
\end{array}
$$

$$
b=2 z_{n}-z_{n-1}=2((n+1) a-n c)
$$

$$
-(n a-(n-1) c)
$$

$$
=n a+2 a-(n+1) c
$$

$$
=(n+2) a-(n+1) c
$$

Set $c=0, a=1 \Rightarrow d=(n+1) \quad b=(n+2)$
So

$$
\begin{aligned}
f=\frac{b-a}{b-d}=\frac{n+1}{1}=n+1 & =\text { \# crossing } \\
& =\text { Conway \# }
\end{aligned}
$$

Similarly it works for voc...

$$
\begin{aligned}
& z_{1}=2 x-y \\
& z_{2}=2 z_{1}-x=4 x-2 y-x=3 x-2 y \\
& z_{3}=2 z_{2}-z_{1}=4 z_{1}-z_{1}-2 x \\
& =3 z_{1}-2 x \\
& =4 x-3 y \\
& z_{n}=(n+1) x-n y
\end{aligned}
$$

Now Consider

If the are n crossings we hare

$$
\begin{aligned}
&-n=f(s)=\frac{a-c}{a-b} \\
& \begin{array}{c}
\text { previous } \\
\text { case }
\end{array} \\
& \text { so - } \frac{1}{n}=\frac{b-a}{c-a}=\frac{b-a}{a+d-b-a}=\frac{b-a}{-(b-d)} \\
&=-f(T) .
\end{aligned}
$$

So it wats in this case abe.
Consider

$$
S_{1}+S_{2}=
$$

Assume it is colored as indicated
Notice $f\left(S_{1}\right)=\frac{x-a}{x-y}$

$$
f\left(s_{2}\right)=\frac{b-x}{b-d}
$$

$$
\begin{aligned}
& f\left(s_{1}\right)+f\left(s_{2}\right)=\frac{b-x}{b-d}+\frac{x-a}{x-y} \\
& \text { and } \quad \begin{aligned}
& a+y=x+c \\
& x+d=b+y \\
& \Rightarrow \quad x-y=c-a \\
& x-y=b-d \\
& \\
& \text { so } \quad f\left(S_{1}\right)+f\left(s_{2}\right)=\frac{b-x+x-a}{b-d}=f\left(s_{1}+s_{2}\right)
\end{aligned}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& f\left(s_{1}\right)=\frac{b-a}{b-y} \\
& f\left(s_{2}\right)=\frac{y-x}{y-d}
\end{aligned}
$$

$$
a+y=b+x \Rightarrow y-x=b-a
$$

so

$$
\begin{aligned}
& \frac{1}{f\left(s_{2}\right)}=\frac{y-d}{y-x}=\frac{y-d}{b-a} \\
& \frac{1}{f\left(s_{1}\right)}=\frac{b-y}{b-a} \Rightarrow \frac{1}{f\left(s_{1}\right)}+\frac{1}{f\left(s_{2}\right)}=\frac{b-d}{b-a} \\
&=\frac{1}{f\left(s_{1} * s_{2}\right)}
\end{aligned}
$$

we see that

$$
f\left(S_{1} * S_{2}\right)=\frac{1}{\frac{1}{f\left(S_{1}\right)}+\frac{1}{f\left(s_{2}\right)}}
$$

Consider

t, u twists

If S has Conway notation $\left[C_{1}, c_{2}, \ldots, c_{n}\right]$ (node then $(S * T)+U$ has Conway notetim

$$
\left[c_{1}, c_{2}, \ldots, c_{n}, t, u\right]
$$

and Conway \#

$$
u+\frac{1}{t+\frac{1}{c_{n}+\frac{1}{\ddots}+\frac{1}{c_{1}}}} \quad(A *)
$$

So
by Induction Hyp.

$$
c_{n}+\frac{1}{c_{n-1}+\frac{1}{-\ddots}+\frac{1}{c_{1}}}=f(s)
$$

So we see that by (*) ail $(* *)$

$$
f((S * T)+U) \text { is the Conway \# for }
$$

$$
(S * T)+U
$$

A similar argurnet work for RTD w/ even \# of terms.

By Induction, f is the Conway \# for cen cr RTD wI odd\# of terms in Conway notation

