(II) $\mathrm{V}^{\text {knot Group }}$ Combinatorial

Calving bs a group G
\{strainds $\rightarrow G$

$$
\begin{gathered}
c=a^{-1} b a \\
\tilde{I} \\
\mathbb{1}=a^{-1} b a c^{-1}
\end{gathered}
$$

Use diagram D to defies a group $G(D)$

Alphabet

$$
=\left\{x_{1}, x_{2}, x_{3}\right\}
$$

Relater for each crossing

$$
\begin{aligned}
& x_{2} \quad x_{2}=x_{1}^{-1} x_{3} x_{1} \\
& x_{1} \quad 1=x_{1}^{-1} x_{3} x_{1} x_{2}^{-1} \\
& x_{3}^{-1} x_{2} x_{3} x_{1}^{-1} \\
& x_{2}^{-1} x_{1} x_{2} x_{3}^{-1} \\
& G(D)=\left\langle x_{1}, x_{2}, x_{3} \left\lvert\, \begin{array}{l}
x_{1}^{-1} x_{3} x_{1} x_{2}^{-1} \\
x_{3}^{-1} x_{2} x_{3} x_{1}^{-1} \\
x_{2}^{-1} x_{1} x_{2} x_{3}^{-1}
\end{array}\right.\right\rangle
\end{aligned}
$$

$$
\left.\begin{array}{r}
G(D)=\left\langle x_{1}, x_{2}, x_{3} \left\lvert\, \begin{array}{l}
x_{1}^{-1} x_{3} x_{1} x_{2}^{-1}, \\
x_{3}^{-1} x_{2} x_{3} x_{1}^{-1} \\
x_{2}^{-1} x_{1} x_{2} x_{3}^{-1}
\end{array}\right.\right\rangle \\
=\left\langle x_{1}, x_{2}, x_{3}\right| \begin{array}{l}
x_{2}=x_{1}^{-1} x_{3} x_{1}, \\
x_{1}=x_{3}^{-1} x_{2} x_{3} \\
x_{3}=x_{2}^{-1} x_{1} x_{2}
\end{array} \\
=\left\langle x_{1}, x_{2}\right| x_{2}=x_{1}^{-1} x_{2}^{-1} x_{1} x_{2} x_{1}, \\
\left.x_{1}=x_{2}^{-1} x_{1}^{-1} x_{2} x_{2} x_{2}^{-1} x_{1} x_{2}\right\rangle \\
=\left\langle x_{1}, x_{2} \mid \quad x_{2}=x_{1}^{-1} x_{2}^{-1} x_{1} x_{2} x_{1},\right\rangle \\
=\left\langle x_{1}, x_{2}\right| x_{2}^{-1} x_{1}^{-1} x_{2} x_{1} x_{2} x_{1} x_{2}=x_{1} x_{2} x_{1} \\
\left.x_{1} x_{2} x_{1}=x_{2} x_{1} x_{2}\right\rangle
\end{array}\right\rangle
$$

$$
\begin{array}{r}
x_{1}=x_{2} x_{1}^{-1} x_{2}^{-1} x_{1} x_{2}^{-1} \\
\\
x_{2} x_{2} x_{1}^{-1} x_{2}^{x} x_{1}^{-1} \\
\downarrow
\end{array}
$$

$$
\begin{aligned}
& c=x_{2}^{-1} d x_{2} \\
& x_{2} c x_{2}^{-1}=d \\
& x_{2} x_{1}^{-1} x_{2} x_{1} x_{2}^{-1}=d \\
& G(D)=\left\langle x_{1}, x_{2}\right| x_{1}^{-1} x_{2} x_{1}^{-1} x_{2}^{-1} x_{1} x_{2} x_{1}^{-1} \\
& \left.x_{2} x_{1} x_{2}^{-1}\right\rangle
\end{aligned}
$$

know Every knat haes an ascicted knotgroup (defied,p ismorphism)

Natice if G is sone ther group that colors adiagram D we have a function

Convisaly if if $f: G(D) \rightarrow G$ is a homomaphisn ve get a coloring

$$
\rightarrow
$$

$$
\left\langle x_{1}, x_{2} \mid x, x_{2} x_{1}=x_{2} x_{1} x_{2}\right\rangle
$$

$$
\downarrow^{f}
$$

G
Uphat corvespondence beheem hompurppisins cobvirgs bo gaps $\&(D)$ I 6

Notice that (isomaphism frae) $G(D)$ is a Knotinuaicat we write $G(K)$ uenuedon't have a partic. diagram in mind
Thin (Gordon-Luecke)
If K_{1}, K_{2} are prime tuts with isomorphic knot graph then K_{1} is equivalut to $/ C_{2}$ (possibly after mirroring)

Problem kntgrouss are very had tanalsze

Knotgraps are tspically non-ablion (dor't commute)
EX

$$
\begin{aligned}
& \bigcap_{D} G(D)=\langle x, \mid\rangle \\
& x_{1} \rightarrow 1 \\
& x_{1}^{2} \rightarrow 2 \text { etc. } \\
& x_{1}^{-3} \rightarrow-3
\end{aligned}
$$

$$
\int\left\langle x_{1}, x_{2} \mid x_{1} x_{2} x_{1}=x_{2} x_{1} x_{2}\right\rangle\left\langle\left. x_{1} x_{2}\right|_{\text {in }} ^{\prime \prime} x_{1} x_{2} x_{1} x_{2}^{-1} x_{1}^{-1} x_{2}^{-1}\right\rangle
$$

\downarrow make commete

$$
\begin{aligned}
& \left\langle x_{1}, x_{2} \mid x_{1}^{z} x_{1}^{*} y_{2} x_{2}^{-i}\right\rangle \Rightarrow \text { make commute } \\
& \left\langle x_{1}, x_{2} \mid x_{1}=x_{2}\right\rangle=\left\langle x_{1} 1\right\rangle
\end{aligned}
$$

$$
x_{i}^{-1} x_{j} x_{i}=x_{k}
$$

\downarrow make commute

$$
x_{j}=x_{k}
$$

\Rightarrow monochonatic
grap becons $\langle x, 1\rangle \cong \mathbb{Z}$

* After making a knot grop
commutativ, it becores $G(0)$
Thm (PapaKyiakopollos)
If $G(k) \cong \mathbb{Z}$ then $k=0$

