
Notes on the Alexander polynomial
and Bureau representation .
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Def An Alexander coloring of
a→ knot , link , braid diagram D
oriented
is a function { strands } → A
5. t . at a crossing yb I left

w/ colors a,b, c as
↳ overshare

c a

indicated we have ← right of
( I-t) at Eb - c = o

overshared

( equivalently , c = ( I -Ha + tb )

The associated crossing-arcn.at
is the matrix corresponding to the

linear ( for fixed t) system .
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Assuming u had a knot diagram we

calculate the Alexander polynomial
by crossing out any rowI any column
and finding the determinant
EI
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vsingmalhemah-c.ae#
B/c we want this to be invariant under R mores

this is only well defined up to melt . by
± t
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for any ne 2 .



2-8*t+ 11*t^2-8*t^3+ 2*t^4

The standadfrm of the Alexandr
polynomial is the one w/ positive
constant term

.
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Knot Info lists the Alexandr polynomial
•
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plugging in t =
- I gives the determinant

( up to t ) :
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Bura - Rep . of Braid groups

consider a braid on n - strands

× Y Z w u
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This function is unchanged by Ridemeister
moves . It is also linear
fpc Ftw ) = fpatstfpcc)
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,
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So fp can be represented by a matrix

w/ entries in A .
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A This has nothing to
do 4 a crossing -arc matrix !



Let Bn = { n - strand braids}
.

Bn is a grasp w/ stacking as tee

operation .

e. g .

in By : A = Y,

B -

- l l
"

BA = 1,41
Note that tf A. BE Ba

bsfa:king FBA = FB oft function composition
w
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.



Conclusion tf n z z

we have a homomorphism

Bn → Glen ( t )
q r

braids Rxn matrices
w/ n-strands w/ entries in 1

and nonzero determinant

This is called the Buraureprese-ik.cm
of the braid group .

Sadly it is not injective
for n 75 .

(Moody, Long-Paton , Bigelow)
It is injective for N=2c3

It is FINO -wit ifd-

it is injective for R -- 4
.


