Notes on the Alexander poly nomial and Burau representation.

A Laurent polynomial $p(t)$ is of the form

$$
a_{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}+a_{-1} t^{-1}+\cdots+a_{-m} t^{-m}
$$

for some $m, n \in \mathbb{N},\{0\}$. The a_{i} ave the coefficients.
$\mathbb{Z}\left[t^{ \pm 1}\right]$ is the set of Lauvect polynomials wo integer coefficients. It is a "module" because we con add the elements and scale the elements by integers.

$$
\begin{aligned}
& \text { Let } \Lambda=\mathbb{Z}\left[t^{ \pm 1]}\right. \text {. } \\
& \Lambda^{n}=\underbrace{\Lambda \times \Lambda \times \cdots \times \Lambda}_{n} \text { is the set }
\end{aligned}
$$

of vectors w, entries: $n \Lambda$ and n terms. Ex $\quad\left(t^{2}+t, 1+\frac{1}{t}\right) \in \Lambda^{2}$.

Def An Alexander coloring f $a_{\nu}, k_{n o t}$, link, braid diagram D oriented is a function $\{$ strands $\} \rightarrow \Lambda$ s.t. at a crossing
$u /$ colors a, b, c as indicated we have

$$
(1-t) a+t b-c=0
$$ overstiond

(equivalatly, $\quad c=(1-t) a+t b)$
The associated crossing-ave matrix is the matrix corresponding to the linear (for fixed t) system.
$E x$

98 from Knot Info

$$
1:(1-t) x_{1}+t x_{5}-x_{4}=0
$$

$2:(1-t) x_{5}+t x_{1}-x_{9}=0$
3: $(1-t) x_{4}+t x_{7}-x_{6}=0$
$4: \quad(1-t) x_{7}+t x_{6}-x_{5}=0$
5: $(1-t) x_{6}+t x_{4}-x_{3}=0$
6: $(1-t) x_{3}+t x_{7}-x_{8}=0$
7: $(1-t) x_{8}+t x_{2}-x_{3}=0$
8: $(1-t) x_{2}+t x_{8}-x_{9}=0$
$9:(1-t) x_{9}+t x_{1}-x_{2}=0$

Assuming whore a knot diagram we calculate the Alexander polynomial by crossing out any row z any column and finding the determinant
Er

	$1-t$	0	0	-1	t	0	0	0	0	
	t	0	0	0	$1-t$	0	0	0	-1	
	0	0	0	$1-t$	0	-1	t	0	0	
	σ	0	0	0	-1	t	$1-t$	0	0	
	0	0	-1	t	0	$1-t$	0	0	0	
	0	0	$1-t$	0	0	0	t	-1	0	
	0	t	-1	0	0	0	0	$1-t$	0	
	0	$1-t$	0	0	0	0	0	t	-1	
	t	-1	0	0	0	0	0	0	$1-t$	

$$
\operatorname{det}()=-2 t^{5}+8 t^{4}-11 t^{3}+8 t^{2}-2 t
$$ using Mathematic.

Ble we want this to be invariant under mons this is only well defined up to mutt. by $\pm t^{n}$ for any $n \in \mathbb{Z}$.

The standard form of the Alexander polynomial is the one w/ positive constant term.

$$
\text { Ex } \quad-2 t^{5}+8 t^{4}-11 t^{3}+8 t^{2}-2 t
$$

$$
\downarrow \text { multiply by }-t^{\prime}
$$

$$
2 t^{4}-8 t^{3}+11 t^{2}-8 t+2
$$

$$
\nearrow
$$

Alexandu poly. of knot 98 in stander form.
Knot Info lists the Alexander pol's noria as $\underbrace{2-8^{4}+11^{*} \uparrow \wedge-8^{4} \uparrow \lambda+2^{2}+\wedge 4}$

$$
\underbrace{2-8^{t}+11^{1+\wedge}+2-8^{4}+3+2^{2+} \wedge 4}_{2-8 t+11 t^{2}-8 t^{3}+2 t^{4} \text { so we didache }} \text {. }
$$

plugging in $t=-1$ gins the determinant (up to \pm):

$$
2+8+11+8+2=31
$$

(II) Burau Rep. of Braid groups

Considu a braid on n-strady

Assigning an element of 1 to the top of eachstrond Z orienting the strands downward, we con apply the Alexander coloring role of each crossing
$x^{\prime} y^{\prime} z^{\prime} w^{\prime} u^{\prime}$ to get elements of 1 assigned to the bottom f each string.
ex $t t^{2} 1-t^{3} 1-t$

$$
(1-t) t^{2}+t\left(1-\frac{1}{t}\right)
$$

$$
=-t^{3}+t^{2}+t-1
$$ braid \&, we get a function

$$
f_{\beta}: \Lambda^{n} \rightarrow \Lambda^{n}
$$

This function is unchanged by Reidemeista moves. It is also linear

$$
\begin{aligned}
& \quad f_{\beta}(\vec{v}+\vec{u})=f_{\beta}(\vec{v})+f_{\beta}(\vec{u}) \\
& \forall \vec{v}, \vec{w} \in \Lambda^{n} \\
& \text { and } f_{\beta}(a \vec{v})=a f_{\beta}(\vec{u}) \\
& \forall a \in \mathbb{Z} \text { and } \vec{v} \in \Lambda^{n} .
\end{aligned}
$$

So f_{β} can be represented by a matrix wo entries in 1 .
Ex $\left.f^{a}\right)_{\beta}^{b} c \quad f_{\beta}\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{l}(1-t) a+t b \\ c \\ t a+(1-t) c\end{array}\right)$

$$
(1-t) a+t b c<(1-t) c+t a
$$

So the matrix is $\left(\begin{array}{ccc}1-t & t & 0 \\ 0 & 0 & 1 \\ t & 0 & (1-t)\end{array}\right)=\left[f_{\beta}\right]$

* This has nothing to
do wi a crossing -arc matrix!

Let $B_{n}=\{n$-strand broiled $\}$.
B_{n} is a group wi striking the operation.
egg. in $B_{4}: A=$ Ci

$$
B A=\left\lvert\, \begin{aligned}
& \zeta=\left\{\left.\begin{array}{l}
\zeta \\
\vdots \\
\vdots
\end{array} \right\rvert\,\right.
\end{aligned}\right.
$$

Note that $\forall A_{1} B \in B_{n}$
$\underbrace{\text { stacking }}_{\text {brail }} f_{B A}=f_{B \cdot f_{A}}$ function composition
So

$$
\left[f_{B A}\right]=\left[f_{\beta}\right]_{\hat{N}_{\text {matrix molt. }}}^{\left[f_{A}\right]}
$$

Conclusion $\quad \forall n \geqslant 2$
We have a homomorphism

This is called the Burau representation of the braid group.

Sadly it is not injective in for $n \geqslant 5$. (Madly, Long-Paton, Bigelow)
It is injective for $n=2,3$
It is $O K N O W \perp$ if it is injective for $\Omega=4$.

