
Fall 2018/MA 331 HW 8: Was the Mayflower compact?

Before beginning this homework assignment, please review the guidelines for submitting homework.
In particular, If you consult a classmate or online source, you must give credit for the help you re-
ceived. Failure to do so may result in a report of academic dishonesty. You are, however, strongly en-
couraged to work with classmates – just be sure to give them credit for any ideas or help they provide!

Also, please write down the total amount of time spent working on the assignment at the top of what
you turn in. If you are spending significantly more than 8 hours per week on homework assignments,
you should talk with me to devise a new strategy.

The weekly homework assignments are broken out by day. It is crucial that you meet the deadlines
for the reading assignments. When you do the reading, I encourage you to try to prove the theo-
rems/propositions/etc. for yourself before reading the proofs in the book. As you read, sketch ad-
ditional pictures, make marginal notes. In other words, be an active reader!

For the problems, I strongly encourage you to work with classmates, but be sure you are an active
contributor to the discussion. Do not spend time looking for additional online sources. It is easy to
waste a lot of time which could be used thinking. There are also a lot of proofs out there which are
incorrect or which require a different background from what you have or assume that the course is
structured differently.

There is no additional reading for this week. The following problems are mostly all fairly challenging
and you should start early. They are intended to give you the opportunity to put together many of the
tools we’ve discussed so far. If you are feeling overwhelmed by the assignment, come get help earlier
rather than later.

Note: Corrections are in red.

(1) Let X be a topological space. Prove that X has at least k connected components if and only if
there exists a surjective continuous function X →{0, . . . , k −1}.

(2) (1st steps in Algebraic Topology after Kosniowski) Recall thatZ/2Z= {0, 1} is the group with two
elements. We can multiply and add elements of Z/2Z using 0 as the additive identity, and 1 as
the multiplicative identity and 1+1= 0.

For a topological space X , let C 0(X ) = { f : X → Z/2Z} be the set of all continuous functions
X →Z/2Z.

(a) Prove that C 0(X ) is a vector space. That is:

(i) If f , g ∈C 0(X ), then f + g ∈C 0(X )
(ii) If k ∈ {0, 1} and f ∈C 0(X ), then k f ∈C 0(X ).

(iii) Notice that the function which is constantly 0 is the additive identity for C 0(X ).

(b) Let B be a basis for C 0(X ). This means that B ⊂ C 0(X ), and given f ∈ C 0(X ) there exist
functions b1, b2, . . . , bn ∈ B such that

f = b1+ · · ·+ bn (mod 2)

Furthermore, two finite sums of basis functions are equal if and only if exactly the same
functions are in each sum. Assume that X has finitely many connected components and
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prove that B has finitely many elements and that this number is equal to the number of
connected components of X .

(BONUS: Do this without the hypothesis that X has finitely many connected components.)

(EASIER VERSION (for less points): Prove that X is connected if and only if B has exactly
one elements.)

(3) (Based on Kosniowski) These are the pancake and the antipodal point problems. See the figure
below for clarification. They are motivated by the question: given a misshapen pancake and
four siblings, is it possible to divide the pancake into four pieces of equal area using only two
cuts which are perpendicular to each other?

(a) Recall that S n is the set of all unit vectors in Rn+1. Using the fact that S n is connected for
n ≥ 1, show that if f : S n →R is continuous, then there exists x ∈ S n such that f (x ) = f (−x ).
(Hint: Consider g : S n → R defined by g (x ) = f (x )− f (−x ). If x0 ∈ S 2 has g (x0) > 0, show
that g (−x0)< 0 and use connectedness.)

(b) Let A ⊂ R2 be a a bounded region having well-defined area and smooth boundary. Prove
that there exist perpendicular lines L and M in R2 dividng A (no matter how misshapen)
into four parts, each of exactly the same area. Hint:

(i) Let S be a circle enclosing A. For x ∈ S , let Dx be the diameter of S having an endpoint
at x . Prove (using IVT) that for every x ∈ S 1, there exists a line L x perpendicular to
Dx cutting A into two pieces of exactly equal area. Also show that either there is a
unique such line or there is a closed interval’s worth (on Dx ) of such lines. In the
latter case, take L x to pass though the midpoint of the interval.

(ii) Fix x ∈ S 1 and let y be a point a quarter of the way around the circle from x . Let Mx

be the line perpendicular to Dy cutting A into two pieces of exactly equal area. (As
before, if there is ambiguity for Mx , then there is an interval’s worth and we choose
the midpoint of the interval for Mx to pass through.) So L x and Mx are perpendicular
lines each dividing A into two regions of equal area. Number the regions counter-
clockwise by R1(x ), R2(x ), R3(x ), R4(x ). Let g i (x ) be the area of Ri (x ). Explain why
each g i is continuous. (Hint: move x slightly and argue that the area changes only
slightly.)

(iii) Prove that g1 = g3 and g2 = g4.

(iv) Let f = g1 − g2 = g3 − g4. Let y ∈ S 1 be the point obtained by rotating x π/2 radians
counter-clockwise. Prove that f (y ) =− f (x ).

(v) Prove that there exists x ∈ S 1 with f (x ) = 0.

(4) (Based on Burago, Burago, Ivanov.) Let (X , d ) be a metric space and suppose A ⊂ X . For r > 0,
Nr (A) = {x ∈ X : d (x , A) < r }. Equivalently, Nr (A) is the union of all open balls of radius r
centered at points of A. For compact subsets A, B ⊂ X , let

dH (A, B ) = inf{r > 0 : B ⊂Nr (A) and A ⊂Nr (B )}.

(a) Prove that dH (A, B ) equals the maximum of sup{d (a , B ) : a ∈ A} and sup{d (A, b ) : b ∈ B }.

(b) Prove that dH (A, B )≤ r if and only if d (a , B )≤ r for all a ∈ A and d (A, b )≤ r for all b ∈ B .

(c) Prove that d is a metric on the set K (X ) of all compact subsets of X . (This is called the
Hausdorff metric, but don’t look it up online in order to complete this problem.)
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FIGURE 1. The Pancake Problem

(d) Suppose that if X is compact and Ai ⊂ X is compact for all i ∈N. Suppose that for all i ∈N,
Ai+1 ⊂ Ai . Prove that the sequence (Ai ) in K (X ) converges (in the Hausdorff metric) to
⋂

i∈N
Ai .

(e) (BONUS) Suppose that X ⊂Rn is compact and that for all i ∈N we have compact Ai ⊂ X .
Suppose also that (Ai ) converges to A ∈ K (X ) (using the Hausdorff metric). Prove that if
each Ai is convex, so is Ai . (That is, the set of all compact, convex sets in X is closed in
K (X ).)

(5) Suppose that X and Y are topological spaces. Let C (X , Y ) be the set of all continuous functions
f : X → Y . For a compact set K ⊂ X and an open setU ⊂ Y , let B (K ,U )be the set of all elements
f ∈ C (X , Y ) such that f (K ) ⊂U . Let T be the topology (called the compact-open topology)
on C (X , Y ) generated by collection of all B (K ,U ). (That is, the B (K ,U ) form a sub-basis for the
topology.) Give C (X , Y ) this topology. Prove the following:

(a) If X has a single point, then C (X , Y ) is homeomorphic to Y .

(b) If Y is Hausdorff, then so is C (X , Y ).

(c) Suppose Y is a metric space with metric d and that ( fk ) is a sequence in C (X , Y ) converging
(according to the topology T ) to f ∈ C (X , Y ). Suppose also that K ⊂ X is compact. Prove
that for all ε> 0, there exists N ∈N such that for all a ∈ K and all n ≥N , d ( fn (a ), f (a ))<ε.
(That is ( fk ) converges to f uniformly on K .)

(d) Suppose that both X and Y are metric spaces and that dY is the metric on Y and that X
is compact. Let d ∗( f , g ) = sup

x∈X
dY ( f (x ), g (x )). Show that d ∗ is a metric on C (X , Y ) and that

the resulting topology is the compact-open topology.

(6) Let X be a non-compact topological space and let∞ be some point not in X . Let ÒX = X ∪{∞}.
Define a subset U ⊂ ÒX to be open if either of the following holds: U ⊂ X is open in X or there
exists a closed, compact set K ⊂ X such that U = (X \K )∪{∞}. Prove:

(a) this defines a topology on ÒX (called the one-point compactification of X ) Hint: use the
definition of “topology” involving closed sets, rather than open sets.

(b) ÒX with this topology is compact,

(c) For every open set U ⊂ ÒX , there exists x ∈U ∩X . (That is, X is dense in ÒX )

(d) Prove that if X is homeomorphic to Y then ÒX is homeomorphic to ÒY .
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(7) (Freudenthal Endpoint Compactification) Let X ⊂ Rn be a path connected, closed and un-
bounded subset. Give X the euclidean metric d . Recall that the ball

B (x0, R ) = {x ∈ X : d (x0, x )≤R }
is compact.

A proper ray in X is a continuous map r : [0,∞) → X such that for every R > 0, there exists
N ∈ [0,∞) such that for all t ≥N , r (t ) 6∈ B (x0, R ). LetR denote the set of all proper rays r such
that r (0) = x0. See the figure below.

For R > 0 and proper rays r1, r2 ∈R , we define r1 ∼R r2 if and only if there exists N1, N2 ∈ [0,∞)
such that for all s ≥N1 and t ≥N2, there is a path in X \B (x0, R ) from r1(s ) to r2(t ).

(a) Prove that for each R > 0, ∼R is an equivalence relation onR .

(b) For r1, r2 ∈R , define r1 ∼ r2 if and only if r1 ∼R r2 for all R > 0. Prove that∼ is an equivalence
relation onR . LetR denote the set of equivalence classes. An element ofR is called an
end of X .

(c) Let ÒX = X ∪R . Declare any open set in X to be open in ÒX . Also, for each R > 0, consider
an R -equivalence class [r ]R . Let Ur be the component of X \B (x0, R ) containing all but a
bounded amount of each ray in [r ]R . Consider the set Ur ∪ [r ]R to be open as well.1 Show
that these open sets are a basis for a topology on ÒX .

(d) Prove that (with this topology) ÒX is compact.

(e) For X =R, show that ÒX is homeomorphic to [0, 1] but for X =R2, ÒX is (homeomorphic to)
the one-point compactification of X .

(f ) (BONUS) Let X be an infinite, rooted binary tree without any leaves. Give X the metric
where each edge has length one, and the distance between two vertices is the minimum
number of edges needed to travel from one vertex to the other along edges of the graph.
Show that as a subspace of ÒX , the setR is homeomorphic to the Cantor Set.

Rx0

r

X

FIGURE 2. A proper ray. At time N the ray leaves the compact ball of radius R forever.

1Really we should write Ur ∪{[s ] : s ∈ [r ]R }where we restrict to all rays r such that Ur contains a bounded amount of r .
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