Fall 2018/MA 331Exam 1 Study Guide

The exam will consist of a section of definitions, a section of old problems (eg. from Homework or class), and at least one new problem. Here is a list of problems (mostly ones you've seen before) to study. You should be pro-active about finding others to study, too.

- (1) Let *X* be a set having the discrete metric. Prove that every subset of *X* is open, when using the topology induced by the discrete metric.
- (2) Let *X* be a set with a metric *d*. Prove that every singleton $\{x\}$ is closed.
- (3) Let d_1 and d_2 be metrics on a set *X*. Define *d* on *X* by $d(x, y) = \max\{d_1(x, y), d_2(x, y)\}$. Prove that *d* is a metric.
- (4) Prove that in a metric space (X, d), the uinon of any number of open sets is open.
- (5) Prove Cantor's nested interval theorem and use it to prove the Cantor set has uncountably many elements.
- (6) Give an outline of a proof of the Intermediate Value Theorem.
- (7) Prove that a sequence in a metric space can have at most one limit.
- (8) Prove that a bounded, monotonic sequence in \mathbb{R} converges.
- (9) If (x_n) is a Cauchy sequence in a metric space such that it has a convergent subsequence, then (x_n) also converges.
- (10) Let (X, d_1) and (Y, d_2) be metric spaces. Suppose that (a_n, b_n) is a sequence in $X \times Y$. Assuming $X \times Y$ has the product metric, prove that (a_n, b_n) converges if and only if (a_n) converges and (b_n) converges.
- (11) Prove that a subset A of a metric space X is closed if and only if every sequence (a_n) in A which converges in X also converges in A.
- (12) Suppose that X is a set and Y is a topological space. Prove that $\{f^{-1}(V) : V \subset Y \text{ is open }\}$ is a topology on X.
- (13) Let *X* be a set and $x \in X$. Let $\tau \subset \mathscr{P}(X)$ be the set whose elements are precisely the sets containing *x*. Prove that $\tau \cup \{\emptyset\}$ is a topology on *X*.
- (14) Prove that the intersection of topologies is a topology.
- (15) Suppose that $f: X \to Y$ and that X is a topological space. Prove that $\{U \subset Y : f^{-1}(U) \text{ is open in } X\}$ is a topology on Y.
- (16) A subset A of a topological space X is closed if and only if it contains all its accumulation points.
- (17) Suppose that *A* is a subset of a topological space *X*. Let \overline{A} be the smallest closed set in *X* containing *A*. Prove that $\overline{A} = A \cup A'$.
- (18) Problem 17 from Section 3.2.
- (19) Show the Sorgenfrey topology on \mathbb{R} is a superset of the euclidean topology. (i.e. it is finer)
- (20) Show that \mathbb{R}^n with the usual topology is second countable.
- (21) Prove the wedge of countably many circles is not homeomorphic to any subspace of \mathbb{R}^2 .

- (22) Proposition 5 from Section 3.5.
- (23) Show that every mapping from a discrete space is continuous, as is any mapping to an indiscrete space.
- (24) Prove that the composition of continuous functions is continuous.
- (25) Find topological spaces *X* and *Y* and a continous function $f: X \to Y$ which is open, but not closed.
- (26) Exercise 9 from Section 3.5.
- (27) Suppose that *Z* is a topological space and that $Y \subset Z$ has the subspace topology. Given $X \subset Y$, we can give *X* the subspace topology τ_1 from *Y* or the subspace topology τ_2 from *Z*. Prove $\tau_1 = \tau_2$.
- (28) Suppose that *X* is a topological space and let $A \subset X$. Prove that a subset $B \subset A$ which is open in *A* is also open in *X* if *A* is open in *X*.
- (29) Suppose that *X* is a sequentially continuous topological space and that *Y* is a topological space. If $f: X \to Y$ is a surjective continous function, then *Y* is also sequentially continuous.
- (30) Let $Z = [0, 1]/\{0, 1\}$. Prove that Z is homeomorphic to S^1 .
- (31) Let \mathbb{Z} act on \mathbb{R} by defining $n \cdot x = n + x$. Prove that this defines a group action and that the quotient space \mathbb{R}/\mathbb{Z} by this group action is homeomorphic to S^1 .
- (32) Suppose that *X* and *Y* are topological spaces and that $X \times Y$ has the product topology. Let $y_0 \in Y$. Prove that $\iota: X \to X \times Y$ defined by $\iota(x) = (x, y_0)$. Prove that ι is continuous.
- (33) State and prove the gluing lemma.
- (34) Give an outline of the proof that for the Cantor set *C*, the space $C \times C$ is homeomorphic to *C*.