
Fall 2016/MA 314 Metric Spaces: Technical Stuff

The purpose of these notes is to introduce a few technical tools for handling metric spaces. These tools are
studied more thoroughly in courses in (point-set) topology and real analysis. These notes are intended to
supplement in class discussion.

1. CONTINUITY

As we know from Calculus, continuity is a powerful concept. It turns out that we can define continuous
functions for metric spaces as well.

Definition (Continuous function). Let (X ,dX) and (Y,dY ) be metric spaces. A function f : X→Y is contin-
uous at a point a ∈ X if for every ε > 0, there exists δ > 0 such that if dX(x,a)< δ then dY ( f (x), f (a))< ε .
The function f is continuous if it is continuous at every a ∈ X . It is a homeomorphism if it is a bijection,
is continuous, and has continuous inverse.

One way of thinking about this definition is that a continuous function f : X → Y takes points that are near
(i.e. within δ ) of a to points that are near (i.e. within ε) of a. Thinking of the definition in this way, however,
we must be sure to remember that δ is allowed to depend on ε .

We can rephrase this definition, using balls.

Definition (Open ball). An (open) ball in a metric space (X ,d), centered at a ∈ X , of radius r > 0 is the set

Br(a) = {x′ ∈ X : dX(x′,x)< r}
of elements of X strictly within distance r of x.

A function f : X → Y between metric spaces is then continuous at a ∈ X , if for every ε > 0, there exists
δ > 0 such that f (Bδ (a))⊂ Bε( f (a)). Recall that if S ⊂ X , then f (S) is the subset of Y defined by f (S) =
{y ∈ Y : ∃x ∈ S,y = f (x)}.

We present two other versions of continuity.

Definition (topologically continuous). Let (X ,dX) be a metric space. A subset U ⊂ X is open if for every
a ∈U , there exists r > 0 such that Br(a)⊂U . A function f : (X ,dX)→ (Y,dY ) is topologically continuous
if for every open set U ⊂ Y , the set f−1(U) = {x ∈ X : f (x) ∈U} is open in X .

We can summarize this definition by saying that the preimage of an open set is open. We can prove that the
two definitions are equivalent. Notice that an open ball is an example of an open set (proof?).

Theorem 1.1. Let (X ,dX) and (Y,dY ) be metric spaces and let f : X→Y be a function. Then f is continous
if and only if it topologically continuous.

Fill in the blanks for the following proof or write your own.

Proof. Assume that f is continuous. Let U ⊂Y be open. We will show that f−1(U) is open. Let x∈ f−1(U).
We must show that there exists r > 0 such that Br(x)⊂ f−1(U).

Since x ∈ f−1(U), by definition, f (x) ∈U . Since U is open, there exists such that . Since
f is continuous, there exists such that for all x′ ∈ , we have f (x′) ∈ ⊂U . Thus,

⊂ f−1(U). Hence, f is topological continuous.
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Now assume that f is topologically continuous. We will show f is continuous. Let a∈X and let ε > 0. Since
, the set f−1(Bε( f (a))) is open. Since a ∈ f−1(Bε( f (a))), there exists δ > 0 such that .

Consquently, if x ∈ Bδ (a), we have f (x) ∈ Bε( f (a)). Thus, f is continous. �

We can also phrase continuity in terms of sequences.

Definition (sequentially continuous). Suppose that (xn) is a sequence in X . We say it converges to a ∈ X , if
for all ε > 0, there exists N ∈N such that for all n≥ N, we have xn ∈ Bε(x). A function f : X →Y between
metric spaces is sequentially continuous if whenever a sequence (xn) in X converges to an element a ∈ X ,
the sequence ( f (xn)) converges to f (a) in Y .

Theorem 1.2. A function f : X → Y between metric spaces is continuous if and only if it is sequentially
continuous.

Fill in the blanks or write your own proof.

Proof. Let dX and dY be the metrics on X and Y . Assume first that f : X → Y is continuous. We will show
it is sequentially continuous.

Let (xn) be a sequence in X converging to a ∈ X . We will show ( f (xn)) converges to f (a). Let ε > 0.
Since , there exists δ > 0 such that . Since , there exists N ∈ N such that .
Consequently, . Thus, ( f (xn)) converges to f (a).

We will now show that if f : X → Y is sequentially continuous then it is continuous by proving the contra-
positive. Assume that f is not continuous. Thus, there exists a ∈ X and ε > 0 such that for all δ > 0, there
is a point x ∈ Bδ (a) such that f (x) 6∈ Bε( f (a)). In particular, for δ = 1/n (with n ∈ N), there exists a point
xn ∈ B1/n(a) such that f (xn) 6∈ Bε( f (a)).

The sequence (xn) converges to a because .

The sequence ( f (xn)) does not converge to f (a) because .

Thus, f is not sequentially continuous, as desired. �

Sequential continuity is probably the most natural way of understanding continuity – a sequentially contin-
uous function preserves the convergence of all sequences.

2. COMPACTNESS

Let (X ,d) be a metric space. Most metric spaces of interest have infinitely many elements, which makes
induction or any kind of counting argument difficult. There is a natural class of metric spaces which are not
finite but have the property which makes counting arguments possible. The property is called compactness.
For surfaces (the metric spaces we are most interested in) compactness is equivalent to being made out
of finitely many simple-to-understand pieces. Just as there were multiple ways of defining the notion of
“continuous function” so there are multiple ways of defining the notion of “compact”. We will stick with
the definition which, for metric spaces, is most natural. In a point-set topology or real analysis class, this
might be called “sequential compactness.”

Definition (Compact). Let (X ,d) be a metric space. It is compact if every sequence in X has a subsequence
which converges to some point in X

Informally, this says that the terms of every sequence must pile up somewhere (perhaps in multiple places).
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Example 2.1. The sequence α = 1,0,1,0,1,0, . . . in [0,1] ⊂ R is a sequence which does not converge.
However, it does have a convergent subsequence; for example, α ′ = 1,1,1,1, . . . On the other hand, the
sequence γ = 1,2,3,4,5, . . . in R is a sequence which does not converge and, furthermore, has no convergent
subsequence.

The next theorem is crucially important, but we won’t prove it.

Theorem 2.2. The interval [0,1] with the euclidean metric is compact.

Proof. Proof omitted. See a real analysis or point-set topology text. �

Indeed, every closed, bounded interval in R is compact as follows from the next exercise.

Exercise 2.3. Suppose that X and Y are metric spaces such that X is compact and f : X → Y is surjective
and continuous. Then Y is compact.

Compactness is also preserved under products, as indicated in the next theorem.

Theorem 2.4. Suppose that for k ∈ {1, . . . ,n} the metric space (Xk,dk) is compact. Then under the metric
d defined below, the metric space X =×n

k=1Xk is compact.

For (x1, . . . ,xn),(y1, . . . ,yn) ∈ X define the euclidean product metric to be

d
(
(x1, . . . ,xn),(y1, . . . ,yn)

)
=
√

d2
1(x1,y1)+d2

2(x2,y2)+ · · ·+d2
n(xn,yn).

Lemma 2.5. The euclidean product metric is a metric.

Proof. The properties (M1), (M2), (M3) follow easily. We prove (M4), the triangle inequality. Let x =
(x1, . . . ,xn), y = (y1, . . . ,yn), z = (z1, . . . ,zn) be elements of X . Observe that

∆(x,y) =


d1(x1,y1)
d2(x2,y2)

...
dn(xn,yn)

 ∈ Rn

and that
d(x,y) = ||∆(x,y)||.

Thus,
d(x,y)+d(y,z) = ||∆(x,y)||+ ||∆(y,z)||

≥ ||∆(x,y)+∆(y,z)||
≥ ||∆(x,z)||
= d(x,z).

The last ≥ follows from the triangle inequality applied to each of the di and the fact that each entry in the
the vectors ∆(x,y), ∆(y,z), and ∆(x,z) are non-negative. �

Sketch proof of theorem. We prove this by induction on n. If n = 1 the theorem is obvious. Assume n = 2.
Let ((xn,yn)) be a sequence in X1×X2. Since X1 is compact, (xn) has a subsequence (xnk) converging to
some a ∈ X1. Since X2 is compact, the sequence (ynk) has a subsequence (ynk`

) converging to some b ∈ X2.
Then the subsequence (xnk`

,ynk`
) converges to (a,b).

Assume that the theorem is true for some n≥ 2. We’ll prove it for n+1. Let

φ : X1×X2×·· ·×Xn+1→ (X1×X2×·· ·×Xn)×Xn+1
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be the function defined by
φ((x1, . . . ,xn+1)) = ((x1, . . . ,xn),xn+1).

Give both X1×X2×·· ·×Xn+1 and (X1×X2×·· ·×Xn)×Xn+1 the product metrics and observe that φ is an
isometry. The result follows immediately. �

Corollary 2.6. Any cube in Rn is compact.

Definition. Suppose that V ⊂ Rn. We say that V is closed if V c is open.

Theorem 2.7 (Closed sets contain their limits). The set V ⊂ Rn is closed if and only if every sequence in V
which converges to a ∈ Rn has a ∈V .

Proof. Suppose that V is not open. Then no open ball based at a is contained in V c. Thus, for all n ∈ N,
there exists vn ∈V such that d(vn,a)< 1/n. The sequence (vn) is a sequence in V converging to a ∈V c, so
V does not contain all its limit points.

Now suppose that V does not contain all its limit points. Then there is a sequence (vn) in V converging to
some a ∈ V c. By the definition of convergence, no open ball centered at a is contained in V c, and so V c is
not open. �

Theorem 2.8. If X is a compact metric space, and if V ⊂ X is closed. Then V is compact (with the subspace
metric).

Proof. Let (vn) be a sequence in V . Then (vn) is also a sequence in X . By the definition of compact, there
exists a subsequence (vnk) which converges to a ∈ X . Since V is closed, a ∈ V and so every sequence in V
has a subsequence converging to a point in V . Hence, V is compact. �

Corollary 2.9. Suppose that V ⊂Rn is closed and bounded (i.e. there exists M ≥ 0 such that for all x,y∈V ,
d(x,y)≤M). Then V is compact.

proof sketch. Every bounded set is contained in some cube. Cubes are compact, so V must also be compact.
�

Exercise 2.10. Show that if U ⊂ Rn is either open or not bounded, then U is not compact.

3. COMPLETENESS

Compactness is about guaranteeing that sequences have convergent subsequences. Completeness is about
having sequences which “should” converge actually converge.

Definition. Suppose that (xn) is a sequence in a metric space (X ,d). The discrete length of (xn) is

L((xn)) =
∞

∑
k=1

d(xk,xk+1).

The space (X ,d) is complete if every finite length sequence converges in X .

Prove the next lemma. You will need to use some properties of series from Calc II.

Lemma 3.1. Suppose that (xn) is a finite length sequence in a metric space X . If (xnk) is a subsequence then
it is also finite length and if (xnk) also converges then so does (xn).

Theorem 3.2. If (X ,d) is compact, then it is complete.
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Proof. Let (xn) be a finite length sequence. By compactness of X , it has a convergent subsequence. By the
previous lemma this means that (xn) also converges. �

Theorem 3.3. Rk is complete for all k ∈ N.

Proof. Let (xn) be a finite length sequence in Rk. Then S = {xn : n ∈ N} ⊂ Rk must be bounded as (by the
polygon inequality):

d(x1,xn)≤ d(x1,x2)+ · · ·+d(xn−1,xn)≤ L((xn))

for all n ∈ N.

Let C be a compact set containing S. Then (xn) is a sequence in C and therefore has a convergent sub-
sequence. Since (xn) is finite length that is enough to guarantee that it also converges. Thus, Rk is com-
plete. �

Exercise 3.4. Suppose that X is any metric space such that for every bounded set S ⊂ X there exists a
compact set C ⊂ X such that S⊂C. Prove X is complete.

4. INFIMA AND SUPREMA

Definition. Suppose that A ⊂ R. A least upper bound for A is an element r ∈ R∪{−∞,∞} such that, for
all a ∈ A, a≤ r. An upper bound β for A is the supremum of A if it is no larger than any other upper bound
for A. We write β = supA. A number r ∈ R is a lower bound for A if a ≥ r for all a ∈ A. A lower bound
α ∈ R∪{−∞,∞} for A is the infimum of A if it is no smaller than any other lower bound for A. We write
α = infA.

The following is an important property of the real numbers. We omit the proof.

Theorem 4.1. If A⊂ R has an upper bound r ∈ R, then supA exists (and is a real number). Similarly, if A
has a lower bound in R then infA exists and is a real number.

The next exercise is key to how we use infima and suprema in practice. It shows that decreasing a supremum
by a tiny bit allows us to capture an element of the set and increasing an infimum by a tiny bit also allows
us to capture an element of the set.

Exercise 4.2. Suppose that A⊂R. If supA ∈R, then β = supA if and only if β is an upper bound for A and
for all ε > 0 there exists a ∈ A∩ (β −ε,β ). Similarly, if infA ∈R, then α = infA if and only if α is a lower
bound for A and for all ε > 0 there exists a ∈ A∩ (α,α + ε).

We can use infima to define path metrics.

Definition. Suppose that U ⊂ R2 is path-connected; i.e. there is a path in U between any two points in U .
Let deucl be the euclidean metric on R2 and recall that L(γ) is the length of a piece-wise differentiable path
γ : [a,b]→U . For x,y ∈U , define

dpath(x,y) = inf{L(γ) : γ is a piecewise differentiable path from x to y}.

Theorem 4.3. Let U ⊂ R2 be path connected. Then dpath is a metric on U.

In the following proof, the key to proving the triangle inequality is the observation that if q,r ∈ R have the
property that for all ε > 0 we have q≤ r+ ε , then in fact q≤ r.
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Proof sketch. Let P(x,y) be the set of piecewise differentiable paths in U from x to y. Since U is path-
connected, P(x,y) 6= ∅. Every element of P(x,y) is non-negative since it is the length of a path. Thus,
dpath(x,x) ∈ [0,∞). The constant path is differentiable and so dpath(x,x) = 0 for all ax ∈U .

〈 Prove dpath(x,y) = 0⇒ x = y〉

〈 Establish a bijection between P(x,y) and P(y,x) which preserves length and use this to show symmetry
〉

We now prove the triangle inequality. Let x,y,z ∈ U . Let ε > 0. Then there exists a path γ ∈ P(x,y)
such that L(γ) ∈ (dpath(x,y),dpath(x,y)+ ε/2). Likewise, there exists a path ψ ∈ P(y,z) such that L(ψ) ∈
(dpath(y,z),dpath(y,z)+ε/2). By re-parameterizing, we may assume that the domain of γ is [0,1] and that of
ψ is [1,2]. Define

ζ (t) =

{
γ(t) t ∈ [0,1]
ψ(t) t ∈ [1,2]

for all t ∈ [0,2]. Then ζ : [0,2]→U is a path from x to z. Its length is L(γ)+L(ψ). Thus, for any ε > 0,
there exists ζ ∈ P(x,z), such that

dpath(x,z)≤ L(ζ )≤ dpath(x,y)+dpath(y,z)+ ε

Since this is true for all ε > 0, we have dpath(x,z)≤ dpath(x,y)+dpath(y,z), as desired. �

4.1. Hausdorff distance. We won’t use this result, but it’s a convenient place to practice using infima.

Suppose that (X ,d) is a bounded metric space (i.e. there exists M such that for all x,y ∈ X d(x,y) ≤ M.).
For non-empty subsets A,B⊂ X , define the Hausdorff distance between A and B to be

dH(A,B) = inf{ε : (∀b ∈ B,∃a ∈ A s.t. d(b,a)< ε) and (∀a ∈ A,∃b ∈ B s.t. d(a,b)< ε)}

(that is, the infimal ε such that enlarging A by ε contains B and enlarging B by ε contains A.

Theorem 4.4. Hausdorff distance dH is a semi-metric on the set of non-empty subsets of a bounded metric
space.

4.2. Quotient semi-metrics. This material is crucial.

Let (X ,d) be a metric space and suppose that ∼ is an equivalence relation on X . For x ∈ X , we let x = {y ∈
X : x∼ y} denote the equivalence class of x and X = {x : x ∈ X} be the quotient set. For x,y ∈ X , let

d(x,y) = inf{d(x′,y′) : x′ ∈ x,y′ ∈ y}.

Example 4.5. Let X = R. Define an equivalence relation ∼ on X by

x∼ y⇔

{
x = y or
∃n,m ∈ N s.t. x = 1/n and y = 1/m .

Observe that d(0,2) = d(0,2) = 2 but

d(2,1)+d(1,0) = d(2,1)+ inf{1/n : n ∈ N}= 1+0 = 1.

Thus, d, when applied to X , does not satisfy the triangle inequality.

We want to turn d into something more like a metric on X . Here’s how we do it.
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Definition. For x,y ∈ X , a discrete walk from x to y is a finite sequence

α : x = x0,x′0,x2,x′2,x3,x′3, . . . ,xn−1,x′n−1,xn,x′n = y

such that for all k, xk ∼ x′k (i.e. xk = x′k). The length of α is

L(α) =
n−1

∑
k=0

d(x′k,xk+1).

Lemma 4.6. If a∼ x and b∼ y then if there is a discrete walk from a to b there is a corresponding discrete
walk from x to y of the same length.

We can now define the grasshopper metric.

Definition. Suppose that x,y ∈ X . The grasshopper distance from x to y is

d(x,y) = inf{L(α) : α is a discrete walk from x to y}

Theorem 4.7. The grasshopper distance d is a semi-metric on X.
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