1. Reading

Read Bonahon Chapters 4 and 5 (again!) and Schwartz 12.1-1.5.

2. TO DO

(1) Let X be the strip in \mathbb{R}^{2} bounded by the lines $x=-1$ and $x=+1$. For a fixed $r \geq 0$, let \bar{X}_{r} be the result gluing the point $(-1, y)$ to $(1, y+r)$ for each $y \in \mathbb{R}$. We can give \bar{X}_{r} a path metric inherited from X as discussed in class for the torus. For the following problems, you may work informally. Recall that a geodesic is a locally length-minimizing path. The geodesics in \bar{X}_{r} are all unions of straight line segments in X.
(a) For $r=0$, sketch a picture of a geodesic loop in \bar{X}_{0}. What is its length? Are there any other geodesic loops?
(b) For $r=1$, sketch a picture of a geodesic loop in \bar{X}_{1}. What is its length? Are there any other geodesesic loops?
(c) Prove that if $r, s \geq 0$ with $r \neq s$, then \bar{X}_{r} is not isometric to \bar{X}_{s}.
(d) Describe the isometries of \bar{X}_{r} for different values of r. Do the \bar{X}_{r} for different values of r all have similar types of isometries?
(2) (extra-credit) Bonahon Exercises 4.7 and 4.8

