Fall 2016/MA 314HW 5: The shortest path not taken.

1. Reading

Read Bonahon Chapters 4 and 5 (again!) and Schwartz 12.1 - 1.5.

2. To do

- (1) Let X be the strip in \mathbb{R}^2 bounded by the lines x = -1 and x = +1. For a fixed $r \ge 0$, let \overline{X}_r be the result gluing the point (-1, y) to (1, y + r) for each $y \in \mathbb{R}$. We can give \overline{X}_r a path metric inherited from X as discussed in class for the torus. For the following problems, you may work informally. Recall that a geodesic is a locally length-minimizing path. The geodesics in \overline{X}_r are all unions of straight line segments in X.
 - (a) For r = 0, sketch a picture of a geodesic loop in \overline{X}_0 . What is its length? Are there any other geodesic loops?
 - (b) For r = 1, sketch a picture of a geodesic loop in \overline{X}_1 . What is its length? Are there any other geodesesic loops?
 - (c) Prove that if $r, s \ge 0$ with $r \ne s$, then \overline{X}_r is not isometric to \overline{X}_s .
 - (d) Describe the isometries of \overline{X}_r for different values of r. Do the \overline{X}_r for different values of r all have similar types of isometries?
- (2) (extra-credit) Bonahon Exercises 4.7 and 4.8