
MA 274: Exam 2 Study Guide

Here are some suggestions for what and how to study:

(1) Here are some results you should be especially sure to know how to prove.
You should also think about ways these problems might be varied. And
you should study other problems too including the problems on the pair-
review project.

(a) The compositions of injections/surjections/bijections is a an injec-
tion/surjection/bijection.

(b) A function f : X → Y is a bijection if and only if there is a function
f−1 : X →Y such that f ◦ f−1(y) = y for all y ∈Y and f−1 ◦ f (x) = x
for all x ∈ X .

Solution: Assume, first, that f : X→Y is a bijection. For each, y∈Y ,
let f−1(y) denote the unique element of X such that f ( f−1(y)) = y.
Since f is surjective there is such an element and since f is injective,
it is unique. Then f−1 : Y → X is a function as for each element y∈Y ,
there is a unique x ∈ X with f−1(y) = x. Furthermore, by definition,
for all y∈Y , f ◦ f−1(y) = f ( f−1(y)) = y. Consequently, f ◦ f−1 is the
identity function on Y . Suppose x ∈ X . Then f−1( f (x)) is the unique
x′ such that f (x′) = f (x). In particular, x′ = x and so for all x ∈ X ,
f−1 ◦ f (x) = f−1( f (x)) = x. Thus, f−1 ◦ f is the identity function on
X . Consequently, f−1 and f are inverse functions, as desired.

Now, suppose that f : X → Y has an inverse function f−1 : Y → X .
We will show that f is injective and surjective and is, therefore, a
bijection. Suppose that f (a) = f (b). Since f−1 is a function, we have

f−1( f (a)) = f−1( f (b)).

By the definition of inverse function, we have a = b. Thus, f is injec-
tive.

Now suppose that y ∈ Y . Let x = f−1(y). It exists since f−1 is a
function. Consequently, f (x) = f ( f−1(y)) = y since f and f−1 are
inverses. Thus, for all y ∈ Y , there exists x ∈ X with f (x) = y. There-
fore, f is a bijection. �

(c) Basic proofs by induction (see text, homework, and class notes)

(d) If X is a set with n elements, then every permutation (i.e. bijection
X → X) is the composition of transpositions. (Theorem 6.1.7 - we did
this in class)
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(e) Euler’s theorem for planar graphs: If G is a finite, planar, non-empty,
connected graph with V (G) vertices, E(G) edges, and F(G) faces,
then V (G)−E(G)+F(G) = 2. (This is Theorem 6.2.4).

(f) The Well-Ordering Principle

Solution: Suppose that S ⊂ N is a set without a least element. We
prove that S = ∅. That is, we prove that for all n ∈ N, n 6∈ S. We use
induction.

Consider n = 1. Since 1 is the least element of N and since S ⊂ N, if
1∈ S then 1 is the least element of S, contradicting our initial assump-
tion. Thus 1 6∈ S.

Suppose, therefore, that none of 1, . . . ,k are elements of S. The num-
ber k+ 1 is the least element of N which is bigger than k, and so if
k+ 1 ∈ S, then it would be the least element of S (as none of 1, . . . ,k
are elements of S.) Since S does not have a least element, k+1 6∈ S.

Consequently, by induction, for all n ∈ N, n 6∈ S. Hence, S =∅. �

(g) Every integer greater than one is a multiple of a prime number.

Solution: We prove that every n ∈ N with n ≥ 2 is a multiple of a
prime number by induction. Suppose that n = 2. Then n is prime and
is a multiple of itself, so the result holds.

Assume, therefore, that there is a k ∈ N with k ≥ 2 and with the prop-
erty that for all j with 2≤ j≤ k the number j is a multiple of a prime.
We show that k+1 is a multiple of a prime.

If k+ 1 is itself prime then it is a multiple of itself and is, therefore,
a multiple of a prime. If k + 1 is not prime, then, by the definition
of prime, there exist a,b ∈ N such that neither a nor b are 1 or k+ 1
but k+ 1 = ab. Since b ≥ 2, we have a ≤ k. Thus, by our inductive
hypothesis, a is a multiple of a prime. That is, there exists m ∈ N and
a prime p ∈ N such that a = mp. Thus, k+ 1 = mpb and so k+ 1 is
also a multiple of a prime.

By induction, every natural number at least 2 is a multiple of a prime.
�

(h) Every fraction can be written in lowest terms.

Solution: Suppose that r ∈Q and that r ≥ 0. Let

S = {a ∈ N∪{0} : ∃b ∈ N with r = a/b.}

By the definition of Q, the set S 6= ∅. If 0 ∈ S, then r = 0 = 0/1 is
written in lowest terms since the only factors of 1 are ±1. If 0 6∈ S,
then S ⊂ N. By the well-ordering principle, there exists an element
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a ∈ S which is the least element of S. By the definition of S, there
exists b ∈ N such that r = a/b.

We claim that a and b have no common factors except ±1. If some
negative integer is a factor of both a and b, then its absolute value is
a postive integer which is a factor of both a and b. It suffices to show
that a and b have no common positive factors except 1. Suppose,
therefore, that both a and b are multiples of m ∈ N. Then there exist
k, ` ∈ N such that a = mk and b = m`. Consequently

r = a/b = (mk)/(m`) = k/`.

Thus, k ∈ S. By the properties of multiplication, k ≤ a. Since a is
the least element of S, we have k = a. Thus, ` = b and m = 1 as
desired. �.

(i) If A contains an injective sequence then there is a proper subset B⊂ A
and a bijection f : A→ B.

Solution: Let (an) be an injective sequence in A and let B = A\{a1}.
For a ∈ A, define

f (a) =

{
an+1 if ∃n ∈ N s.t. a = an

a if ∀n ∈ N,a 6= an

Since (an) is an injective sequence, f : A→ b is a well-defined func-
tion. It is a bijection it has an inverse f−1 : B→ A defined by:

f−1(b) =

{
an−1 if ∃n ∈ N\{1} s.t. b = an

b if ∀n ∈ N\{1},b 6= an.

(j) If there is a surjection f : X →Y then there is an injection g : Y → X .

Solution: Suppose that f : X → Y is a surjection. By the Axiom of
Choice, there exists a subset A⊂ X such that the restriction f |A : A→
Y is a bijection. Let g : Y → A be its inverse. The function g is a
bijection and extending its codomain to be all of X , preserves the fact
that it is an injection, though perhaps losing surjectivity. Hence, there
is an injection g : Y → X .

(k) If X is an infinite set then there is an injective sequence in X .

(l) cardN×N= cardN (the Cantor Snake)

(m) The rationals are countable

(n) If X is countable and if A⊂ X , then A is countable.

(o) If there are bijections X → {1, . . . ,n} and X → {1, . . . ,m} for some
n,m ∈ N. Then n = m. (Be careful: this is harder than it looks!)
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Solution: We prove that for all n ∈ N and for all m ∈ N, if there is a
bijection f : X → {1, . . . ,n} and a bijection g : X → {1, . . . ,m}, then
n = m. We induct on n.

If n = 1, then {1} has a unique element. Since f : X →{1} is surjec-
tive, X 6= ∅. If a,b ∈ X , then f (a) = f (b) = 1. Since f is injective,
this implies a = b. Hence X has a unique element. The function
g : X →{1, . . . ,m} is a bijection and so g−1 : {1, . . . ,m}→ X is a bi-
jection. Hence, g−1(1) = g−1(m) since X has a unique element and
g−1 is surjective. Since g−1 is injective, 1 = m. Thus, n = 1 = m as
desired.

Assume, therefore, that for all sets X , if there is some k ∈ N such that
for all m ∈ N, if there is a bijection f : X →{1, . . . ,k} and a bijection
g : X→{1, . . . ,m} then k =m. We prove that for all sets X ′ and for all
m′ ∈ N if there is a bijection f ′ : X ′→ {1, . . . ,k+ 1} and a bijection
g′ : X ′→{1, . . . ,m′} then k+1 = m′.

Let X ′ be a set and m′ ∈ N be such that there is a bijection f ′ : X ′→
{1, . . . ,k + 1} and a bijection g′ : X ′ → {1, . . . ,m′}. Let X = X ′ \
{ f−1(k + 1)}. Then the restriction f = f ′|X is a bijection f : X →
{1, . . . ,k}. Define g : X →{1, . . . ,m′−1} be defined as follows:

g(x) =

{
g′(x) if g′(x)< g′( f−1(k+1))
g′(x)−1 if g′(x)> g′( f−1(k+1)).

The function g has inverse defined, for all j ∈ {1, . . . ,m′−1} by

g−1( j) =

{
g′−1( j) j < g′( f−1(k+1))
g′−1( j+1) j ≥ g′( f−1(k+1)).

Thus, g is a bijection. By the inductive hypothesis, k = m′−1. Con-
sequently, k+1 = m′, as desired. By induction the result holds. �.

(p) The interval (0,1) and the set R are uncountable

(q) For every set X , cardX < cardP(X).

(r) cardR= cardP(N).

(s) Let F be the set of functions from X → {0,1}. Then card(P(X)) =
cardF .

Solution: We construct a bijection h : P(X)→F . For a set A ⊂ X
(i.e. an element of P(X)) define h(A) to be the function h(A) : X →
{0,1} by declaring, for all x ∈ X ,

h(A)(x) =

{
1 x ∈ A
0 x /∈ A.
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Thus, h(A)∈F and so h : P(X)→F is a function. It has an inverse
h−1 defined as follows. Suppose that f : X → {0,1} is an element of
F . Define h−1( f ) = {x ∈ X : f (x) = 1}. Clearly, h−1( f ) ∈P(X). It
is easily verified that h and h−1 are inverses. Hence, h is a bijection.
Consequently, cardP(X) = cardF . �

(2) Here are a few problems you haven’t done before (solutions will be posted
on the Tuesday before the exam):

(a) Suppose that A and B are both countable sets. Then A∪B is countable.
Solution: Since A is countable, there exists an injection f : A→ N.
(If A is infinite, we could take f to be a bijection, but this is not nec-
essary.) Similarly, there is an injection g : B→ N. Define a function
h : A∪B→ N by

h(x) =

{
2 f (x) x ∈ A
2g(x)−1 x ∈ B\A.

Notice that the function is well defined since A and B\A are disjoint.
We show that it is an injection. Assume that h(x1) = h(x2). If this
number is even, then both x1 and x2 are in A and so, since f is an
injection x1 = x2. Similarly, if h(x1) = h(x2) is odd, then both x1
and x2 are in B \A. Since g is an injection we again have x1 = x2.
Consequently, h is an injection.
Since there is an injection from A∪B to N, there is a subset X ⊂ N
such that card(A∪B) = cardX . Since X is countable, A∪B must be
as well. �.

(b) If cardX = cardY and cardY = cardZ then cardX = cardZ. (remem-
ber the precise definitions!)
Solutions: Assume cardX = cardY and cardY = cardZ . Since cardX =
cardY , there exists a bijection f : X→Y . Since cardY = cardZ, there
exists a bijection g : Y → Z. Then by an earlier theorem, g◦ f ◦X→ Z
is a bijection and so cardX = cardZ.

(c) If cardX = cardY then cardY = cardX .
Solution: Assume cardX = cardY . By definition, there is a bijec-
tion f : X → Y . By a previous thorem, there is an inverse function
f−1 : Y → X . Since f is the inverse function to f−1, f−1 is also a
bijection. Hence cardY = cardX .

(d) Let A = {a} be a set with a single element and let X be any set. Let
F be the set of functions from A to X . Prove that cardF = cardX .
Solution: We construct a bijection h : X →F . For x ∈ X , let fx ∈F
be the function defined by

fx(a) = x.

Then set h(x) = fx. Then h : X →F is a function.
Suppose that g ∈F . Define h−1(g) = g(a). Then h−1 : F → X is a
function.
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We show that h and h−1 are inverses of each other. Let x ∈ X . Then
h−1(h(x)) = h−1( fx) = fx(a). This is equal to x by definition. Now
suppose that g ∈F . Then h(h−1(g)) = h(g(a)) = fg(a). But fg(a) is
the function with the property that fg(a)(a) = g(a). Since fg(a) and
g have the same domain, codomain, and take the same values on all
elements of A, they are equal. That is, h(h−1(g)) = g.
Thus, h and h−1 are inverses. �

(e) Suppose that A = {a1,a2} is a set with exactly two elements and let
X be any set. Let F be the set of functions from A to X . Prove that
cardF = cardX×X .
Solution: We construct a bijection h : X ×X → F . For (x1,x2) ∈
X×X , define h(x1,x2) to be the function on A defined by:

h(x1,x2)(a) =

{
x1 a = a1

x2 a = a2

for all a ∈ A = {a1,a2}.
We show that h is a bijection by producing an inverse. Define h−1 : F →
X×X by, for each f ∈F , declaring

h−1( f ) = ( f (a1), f (a2)).

Observe that h−1(h(x1,x2)) = (x1,x2) and that h(h−1( f )) is the func-
tion which, for a ∈ A, takes the value of f (a1) when a = a1 and f (a2)
when a = a2. In other words, h(h−1( f )) = f . Thus, h is a bijection
and so cardF = cardX×X . �.


