

The following discussion is based on that in Prasolov's book *Elements of Combi*natorial and Differential Topology.

Definition 1. If \mathscr{U} is an open cover of $A \subset \mathbb{R}^n$ then the Lebesgue number $\Delta(\mathscr{U})$ of \mathscr{U} is the least upper bound of

$$\{\delta \ge 0 : \forall B \subset A \text{ with } \operatorname{diam}(B) \le \delta, \exists U \in \mathscr{U} \text{ s.t.} B \subset U\}\}$$

Lemma 2 (Lebesgue Covering Lemma). Suppose that $A \subset \mathbb{R}^n$ is non-empty and compact and that \mathscr{U} is an open cover of A. Then $\Delta(\mathscr{U}) > 0$.

Proof. Let $\{U_1, \ldots, U_k\}$ be a finite subcover of \mathscr{U} . Define $f_i \colon A \to \mathbb{R}$ by

$$f_i(x) = d(x, A \setminus U_i).$$

Since $A \setminus U_i$ is a closed subset of a compact set, it is compact. Thus f_i is welldefined. We have $f_i(x) = 0$ exactly when $x \notin U_i$. Let $f = \max(f_1, \ldots, f_k)$. Observe that $f : A \to \mathbb{R}$ is continuous and that for all $a \in A$, f(a) > 0. Thus, $f(A) \subset \mathbb{R}$ is a compact subset which does not contain 0. Consequently, there exists δ with $0 < \delta < \min f(A)$. Thus, for all $a \in A$, there exists *i* such that $d(a, A \setminus U_i) > \delta$. Hence, $A \cap B_{\delta}(a) \subset U_i$. If $B \subset A$ is any set of diameter less than $\delta/2$, and if $b \in B$, then $B \subset B_{\delta}(b)$.

Definition 3 (Lebesgue). Suppose that \mathscr{U} is a finite *closed* cover of a compact set $X \subset \mathbb{R}^n$. Define the **order** $\Omega(\mathscr{U})$ of \mathscr{U} to be

 $m \in \mathbb{Z}$: $\exists x \in X \text{ s.t. } x \text{ belongs to } m \text{ elements of } \mathscr{U}$ and no element of X belongs to m + 1 elements of \mathscr{U}

The **topological dimension** of *X* is equal to *k* if *k* is the least non-negative integer such that for all $\varepsilon > 0$, there exists a finite cover of *X* by closed sets of diameter less than ε and which has order k + 1.

Definition 4. An *n*-dimensional simplex is the convex hull of n + 1 affinely independent points in \mathbb{R}^n . (An affine subspace of \mathbb{R}^n is the translation of a vector subspace of \mathbb{R}^n . Points are affinely independent if they do not lie in an (n-1)-dimension affine subspace of \mathbb{R}^n . The convex hull of a set of points is the smallest convex set containing those points.)

A 2-dimensional simplex is a (solid) triangle. A 3-dimensional simplex is a solid tetrahedron.

Theorem 5 (Dimension of a simplex). The topological dimension of an *n*-simplex is *n*.

Proof. Let $\mathscr{U} = \{U_1, \dots, U_m\}$ be a finite closed cover of an *n*-simplex *A*.

Claim 1: If the diameter of each element of \mathscr{U} is sufficiently small, then the **order** of \mathscr{U} is n+1.

Let F_0, \ldots, F_n be the (n-1)-dimensional faces of A and let a_i be the vertex opposite F_i . The open cover \mathscr{F} consisting of the sets $A \setminus F_i$ are an open cover of A. Let ε be the Lebesgue number of this cover. Suppose that each set in \mathscr{U} has diameter less than ε . By the Lebesgue covering lemma, each U_j does not intersect some F_{n_j} . Also, if v is a vertex of A then it belongs to some U_v and this U_v is disjoint from the other vertices of A.

Let $\phi: \mathscr{U} \to \{F_1, \dots, F_n\}$ be a bijection such that for each $U_j \in \mathscr{U}, \phi(U_j)$ is a face F_{n_j} with $F_{n_j} \cap U_j = \emptyset$. For each $k \in \{0, \dots, n\}$ let A_k be the union of the $U \in \mathscr{U}$ for which $\phi(U) = F_k$. Sperner's lemma and the sequential compactness of A implies that there exists $x \in \bigcap_k A_k$.

(Hint: Label a point $y \in A$ by the least k for which $y \in A_k$. Given a triangulation of A, this is a Sperner labelling of the vertices. Taking Barycentric subdivisions and repeatedly applying Sperner's Lemma give us a sequence having a convergent subsequence, converging to our desired x.)

We conclude that there is an element of x in the intersection of (n+1) elements of \mathscr{U} . Thus the order of \mathscr{U} must be at least (n+1).

We now construct an closed cover with each set having diameter at most $\varepsilon > 0$ so that the cover has order n + 1. This will complete the lemma.

Take the (m+1)st barycentric subdivision of A and look at the *star* of the vertices of the of the vertex. This is a closed cover and has order n+1.

Lemma 6. If $X \subset \mathbb{R}^n$ is compact and if $A \subset X$ is compact, then the topological dimension of *A* is at most that of *X*.

Lemma 7. If *X* and *Y* are homeomorphic compact subsets of \mathbb{R}^n then their topological dimensions are equal.

Proof. Let $h: X \to Y$ be a homeomorphism. Observe that if \mathscr{U} is a finite closed cover of *X* of order κ , then $h(\mathscr{U})$ is a finite closed cover of *Y* having order κ . To see this, recall that order is just defined by a count of points being in a certain number of the sets from the cover. Those properties are unchanged by a homeomorphism.

Consider the set of open balls of radius $\varepsilon > 0$ in *Y*. These form an open cover of *Y* and their pre-image in *X* forms an open cover of *X*. Let δ be the Lebesgue number of this open cover. By the definition of topological dimension, there is a closed cover \mathscr{V} of *X* so that each set in \mathscr{V} has diameter less than δ and $\Omega(\mathscr{V}) = \kappa_X + 1$, where κ_X is the topological dimension of *X*. If $V \in \mathscr{V}$ there is a $y \in Y$ such that

$$V \subset h^{-1}(B_{\varepsilon}(y)).$$

Thus the diameter of h(V) is at most 2ε . Since $h(\mathcal{V})$ has order $\kappa_X + 1$, we see that $\kappa_Y \leq \kappa_X$ where κ_Y is the topogical dimension of *Y*. Switching the roles of *X* and *Y* in the preceding argument shows that $\kappa_X = \kappa_Y$.

Theorem 8. If $m \neq n$ then no open subset of \mathbb{R}^m is homeomorphic to an open subset of \mathbb{R}^n .

Proof. Suppose, to the contrary, that $h: U \to V \subset \mathbb{R}^n$ is just such a homeomorphism. The set *U* contains an *m*-simplex *A*, having topological dimension *m*. There is a simplex $B \subset \mathbb{R}^n$ such that the compact set $h(A) \subset B$. Thus, $m \leq n$. A similar argument shows that $n \leq m$ and so n = m.